CIRRIPEDEN-STUDIEN

ZUR KENNTNIS DER BIOLOGIE, ANATOMIE UND SYSTEMATIK DIESER GRUPPE

AKADEMISCHE ABHANDLUNG

VON

CARL-AUG. NILSSON-CANTELL

UPPSALA 1921
ANMQVIST & WIKSELLS BOKTRYCKERI-A. B.
CIRRIPEDEN-STUDIEN

ZUR KENNTNIS DER BIOLOGIE, ANATOMIE UND SYSTEMATIK DIESER GRUPPE

AKADEMISCHE ABHANDLUNG

WELCHE

ZUR ERLANGUNG DER DOKTORWÜRDE

MIT ERLAUBNIS

DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN SEKTION DER WEITBERÜHMten PHILOSOPHISCHEN Fakultät zu Uppsala

AM 21. MAI 1921, UM 10 UHR VORMITTAGS IM ZOOLOGISCHEN HÖRSAALE

ÖFFENTLICH VERTEIDIGT WIRD

VON

CARL-AUG. NILSSON-CANTEll
LIc. PHIL. GOTL.

UPPSALA 1921
ALMQVIST & WIkSELLS BOKTRYCKERI A-B.
MEINER LIEBER MUTTER
INHALTSVERZEICHNIS

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
</tr>
<tr>
<td>Allgemeiner Teil</td>
</tr>
<tr>
<td>I. Kapitel: Der Nahrungsfang</td>
</tr>
<tr>
<td>II. Kapitel: Die Nahrung</td>
</tr>
<tr>
<td>III. Kapitel: Die Anlage der Borsten</td>
</tr>
<tr>
<td>IV. Kapitel: Larven und Larventwicklung</td>
</tr>
<tr>
<td>a) Larvenformen</td>
</tr>
<tr>
<td>1. Ordnung: Thoracica</td>
</tr>
<tr>
<td>1. Unterordnung, Lepadomorpha</td>
</tr>
<tr>
<td>Scalpellum scalpellum</td>
</tr>
<tr>
<td>Scalpellum gibberum</td>
</tr>
<tr>
<td>Scalpellum convexum n. sp.</td>
</tr>
<tr>
<td>Scalpellum compactum</td>
</tr>
<tr>
<td>Scalpellum ventricosum</td>
</tr>
<tr>
<td>2. Unterordnung, Balanomorpha</td>
</tr>
<tr>
<td>Tetraclita divisa n. sp.</td>
</tr>
<tr>
<td>3. Unterordnung, Verrucomorpha</td>
</tr>
<tr>
<td>Verruca strömia</td>
</tr>
<tr>
<td>II. Ordnung: Acrothoracica</td>
</tr>
<tr>
<td>Alcippe lampas</td>
</tr>
<tr>
<td>III. Ordnung: Rhizocephala</td>
</tr>
<tr>
<td>Peltogaster paguri</td>
</tr>
<tr>
<td>Peltogaster sulcatus</td>
</tr>
<tr>
<td>b) Die Larvenentwicklung und deren Verlegung in die Mantelhöhle des Muttertieres</td>
</tr>
<tr>
<td>V. Kapitel: Studien über den Bau der Maxillardrüse bei den Cirripeden</td>
</tr>
<tr>
<td>Geschichtliche Übersicht</td>
</tr>
<tr>
<td>Eigene Untersuchungen</td>
</tr>
<tr>
<td>I. Ordnung: Thoracica</td>
</tr>
<tr>
<td>1. Unterordnung, Balanomorpha</td>
</tr>
<tr>
<td>Balanus balanoides</td>
</tr>
<tr>
<td>Balanus crenatus</td>
</tr>
<tr>
<td>Chthamalus challengeri</td>
</tr>
<tr>
<td>2. Unterordnung, Verrucomorpha</td>
</tr>
<tr>
<td>Verruca strömia</td>
</tr>
</tbody>
</table>
3. Unterordnung: Lepidomorpha 117
 Scalpellum scalpellum 117
 Oxyanaspis celata 120
 Anelasma squamicola 120
II. Ordnung: Acrothoracica 120
 Lithoglyptes indicus 122
 Alcippe lampas 123
Über die Deutung der Organteile bei den Cirripedien und die
 Exkretion .. 127
Zusammenfassung .. 129

Systematischer Teil 131

VI. Kapitel: Systematische Charaktere, die besondere Beachtung ver-
 dienen .. 131
 1. Mundteile .. 131
 Pedunculata .. 133
 Operculata ... 140
 2. Die Cirren ... 148
 3. Der Filamentanhang 149
 4. Der Caudalanhang 150
 5. Die Platten .. 150
 6. Anatomische Charaktere 152

VII. Kapitel: Besprechung der Einteilung in Familien 153
 Pedunculata .. 153
 Operculata .. 158

VIII. Kapitel: Artbeschreibungen 162
 Ordnung Thoracica 162
 Unterordnung Lepidomorpha 162
 Familie Scalpellidae 162
 Genus Pollicipes 162
 Pollicipes mitella 163
 Pollicipes polymerus 165
 Genus Scalpellum 165
 1. Gruppe Calantica 170
 2. Gruppe Smilium 170
 Scalpellum acutum 170
 Scalpellum scorpio 174
 3. Gruppe Biscalpellum 174
 4. Gruppe Scalpellum 174
 Scalpellum stearnsi 175
 Scalpellum scalpellum 177
 Scalpellum gibberum 178
 Scalpellum Rathbunae 184
 Scalpellum formosum 187
 Scalpellum uniarctica sub sp. 190
 Scalpellum convexum sub sp. 194
 Scalpellum compactum 198
 Scalpellum condensum sub sp. 202
Scalpellum ventricosum .. 205
Scalpellum intermedium .. 208
Genus Lithotrya .. 213
Lithotrya truncata .. 213
Lithotrya truncata longicandata n. subsp. 216
Lithotrya nicobarica .. 219
Familiä Ibidae .. 221
Genus Ibla .. 222
Ibla cunningi .. 222
Ibla quadriradiata ... 224
Familiä Oxynaspidae ... 225
Genus Oxynaspis .. 225
Oxynaspis celata .. 226
Oxynaspis Bocki n. sp. .. 228
Oxynaspis Aurivillii .. 231
Familiä Lepadidae ... 233
Genus Lepas ... 234
Lepas anserifera .. 234
Lepas pectinata .. 235
Lepas anatifera .. 236
Lepas australis .. 237
Lepas Hillii ... 237
Lepas fascicularis .. 238
Lepas fascicularis Aurivillii n. sp. 238
Genus Conchoderma ... 240
Conchoderma auritum .. 240
Conchoderma virgatum 242
Genus Alepas .. 242
Alepas pacifica .. 243
Familiä Heteralepadidae n. Fam. 245
Genus Heteralepas ... 246
Subgenus Heteralepas ... 246
Heteralepas japonica ... 246
Heteralepas quadrata .. 248
Subgenus Paralepas ... 249
Heteralepas pedunculata 249
Heteralepas typica n. sp. 250
Familiä Poecilasmatidae 253
Genus Poecilasma ... 253
Subgenus Poecilasma .. 254
Poecilasma kaempferi ... 254
Subgenus Glyptelasma ... 257
Poecilasma carinatum .. 258
Subgenus Temnaspis ... 258
Poecilasma lenticula .. 259
Poecilasma amygdalum .. 262
Poecilasma amygdalum madagascariense n. subsp. 264
Poecilasma vagans .. 267
Genus Octolasmis .. 268
Octolasmis Nierstraszi 268
Unterordnung Verrucomorpha .. 269
Familie Verrucidae ... 269
Genus Verruca ... 269
Verruca strömia ... 270
Verruca nuxa multiradiata n. subsp. .. 272
Unterordnung Balanomorpha ... 274
Familie Chthamalidae ... 274
Genus Chthamalus .. 274
Examinationsscheibe ... 276
I. Chthamalus stellatus-Gruppe .. 279
Chthamalus challengeri ... 279
Chthamalus stellatus stellatus ... 281
Chthamalus dentatus ... 282
Chthamalus antennatus ... 285
Chthamalus scabrosus .. 287
II. Chthamalus Hembeli-Gruppe ... 290
Chthamalus Hembeli .. 290
Chthamalus Appellöfö n. sp. .. 292
Chthamalus Withersi .. 295
Chthamalus caudatus .. 296
Genus Octomeris ... 298
Examinationstabelle ... 299
Octomeris brunnea ... 299
Octomeris intermedia n. sp. .. 303
Familie Balanidae .. 306
Subfamilie Balaninæ .. 306
Genus Balanus ... 306
Subgenus Megabalanus ... 308
Balanus tulipiformis .. 308
Subgenus Balanus ... 308
Balanus clunneus ... 309
Balanus improcisus ... 310
Balanus amphitrite communnis ... 311
Balanus amphitrite albicostatus ... 314
Balanus amphitrite cirratus .. 316
Balanus amphitrite nicaus .. 318
Balanus trigonus ... 319
Balanus lacernis ... 321
Balanus balanus ... 325
Balanus crenatus ... 326
Balanus glandula ... 326
Balanus patellaris ... 328
Subgenus Semibalanus ... 328
Balanus balanoides ... 328
Subgenus Chirona ... 329
Balanus amaryllis .. 329
Subgenus Austrobalanus .. 330
Balanus flosculus sordidus ... 330
Subgenus Conopea .. 330
Balanus proripiens ... 331
Balanus scandens ... 334
Balanus acutus n. sp.
Subgenus Armatovalanus
Balanus arcuatus
Balanus quadrivittatus
Subgenus Membranobalanus
Balanus longirostrum
Genus Acasta
Acasta Dofleini
Acasta aculeata n. sp.
Acasta porata n. sp.
Genus Elminius
Elminius Kingii
Elminius modestus
Genus Creusia
Creusia spinulosa
Var. 6
Var. 7
Genus Pyrgoma
Pyrgoma milleporae
Pyrgoma grande
Subfamilie Tetractiniinae n. Subfam.
Genus Tetractina
Subgenus Tetractina
Tetractina purpurascens
Tetractina purpurascens chinensis n. subsp.
Tetractina divisa n. sp.
Tetractina porosa viridis
Tetractina porosa rufotincta
Subgenus Tesserepora
Tetractina Wiréni n. sp.
Subfamilie Chelonibiinae
Genus Chelonibia
Chelonibia testudinaria
Subfamilie Coronulinae
Genus Coronula
Coronula diadema
Genus Tubicinella
Tubicinella major
Genus Xenobalanus
Xenobalanus globicipitis
Genus Platylepas
Platylepas decorata
CIRRIPEDEN-STUDIEN.

Zur Kenntnis der Biologie, Anatomie und Systematik dieser Gruppe.

Von
CARL AUG. NILSSON-CANTELL.

Mit Tafeln I*, II*, III* und 89 Figuren im Text.

VORWORT.

Meinem vor einigen Monaten verstorbenen hochverehrten Lehrer, Professor A. Appelöf, der mir die Anregung zu diesen Studien gab, meine Arbeit mit nie ermüdendem Interesse verfolgte und mir stets mit wertvollem Rat beistand, schulde ich meinen tiefsten Dank. Leider hat mich sein Tod verhindert, ihm diesen persönlich abzustatten. Auch ist es mir eine angenehme Pflicht, meinem hochverehrten Lehrer, Professor A. Widén, Präsident des hiesigen zoologischen Institutes, meinen Dank für die bereitwillige Überlassung eines Arbeitsplatzes und die Einführung dieser Arbeit in die Publikationsserie „Zoologiska Bidrag från Upsala“ auszusprechen.

Für rein technische Arbeiten habe ich Fräulein A. Wästfeldt zu danken, die die Tuschezeichnungen mehrerer Textfiguren und die meisten Mikrotomschnitte anfertigte. Da die Tiere technisch schwer zu behandeln sind, mussten zum Zwecke der anatomischen Studien zahlreiche Schnittserien gemacht werden. Fräulein G. Jungberg, die die meisten Lavierungen ausführte, und Fräulein S. Olsson, die mir bei einigen Tuschezeichnungen half, spreche ich hiermit meinen Dank aus. Die meisten Zeichnungen fertigte ich selbst an, weshalb sie vielleicht in künstlerischer Hinsicht einiges zu wünschen übrig lassen.

Upsala, im Februar 1921.

Der Verfasser.
Allgemeiner Teil.

I. Kapitel: Der Nahrungsfang.

Bei Verruca Strömia fällt vor allem auf, daß die Cirren nicht die regelmäßigen Bewegungen wie bei Balamus ausführen. Zwar findet ein Heben und Senken des Körpers und damit gleichzeitig ein Einziehen der Cirren statt, aber dieses geschicht wahrscheinlich zur Erneuerung des

In diesem Zusammenhange können die den Mantel kontrahierenden Bewegungen genannt werden, die Aurivillius in Verbindung mit den Bewegungen des Körpers bringt, was Berndt dagegen nicht finden kann. Daß diese Bewegungen, wie Aurivillius annimmt, für die Vergrößerung der Löcher, in denen Alcippe wohnt, Bedeutung haben, dürfte sicher sein. Ich konnte beobachten, daß die Kontraktionen wirklich unabhängig von den Cirrenbewegungen des Körpers vor sich gehen konnten, doch bestand sicherlich ein Zusammenhang, wenn die Kontraktionen kräftiger waren. Denn da brachen die Bewegungen ab und die rückwärtige Thoraxpartie lag dicht an den Mund angedrückt, wodurch gewiß eine Stütze für Muskelkontraktionen erhalten wurde. Dabei konnte ich aber ebensowenig wie Berndt finden, was Aurivillius (1894 b) folgendermaßen beschreibt: „es stemmen sich die zwei Cirrenpaare des Hinterkörpers den Mundcirren entgegen.“

Durch die Bewegungen entsteht der schon erwähnte Wasserstrom in der Mantelöhle, der scheinbar sowohl von Aurivillius als auch von Berndt übersehen wurde, wogegen sich bei Genthe (1905) eine unvollständige Mitteilung hierüber vorfindet. Aurivillius erwähnt, daß durch die Bewegungen der Cirren, und besonders der Mundcirren, ein Strom in der Mantelöhle entstehen könne, doch aus seiner weiteren Darstellung scheint hervorzugehen, daß der Einsiedlerkreb in der Racemum-Schale durch seine Bewegungen hinreichend für die Wasserzirkulation in den Alcippe-Löchern sorge. Berndt (1903) sagt darüber folgendes: „Ohne Zweifel dienen diese Bewegungen in erster Linie dazu, einen Wasserstrom in die Mantelöhle einzuleiten und dadurch die Atmung zu ermöglichen. Da die Cirren nicht aus der Lippenspalte hervorgestreckt werden, so muß dieser in die Mantelöhle eingeleitete Wasserstrudel auch der Träger der Nahrung der Alcippe sein.“ Genthe, der ungefähr gleichzeitig mit Berndt Alcippe studierte,
gibt etwas ausführlichere Angaben hierüber. Er sagt 1905, Seite 196: „The rhythmical movements of course produce an ingoing and outgoing current of water. Fine particles are seen under the microscopetube drawn in and other pushed out often to a considerable distance.“ Von diesen Forschern ist, glaube ich, Genttje der Wahrheit am nächsten gekommen, wenn auch seine Darstellung unvollständig ist. Aurivillus' Annahme, die Bewegungen des Einsiedlerkrebeses reichten auch für die Wasserzirkulation in den Alcippe-Löchern aus, ist, glaube ich, nicht richtig. Dem spricht auch die enge Mantelöffnung bei Alcippe entgegen.

II. Kapitel: Die Nahrung.

Rauschenplat, der den Darminhalt bei Balanus crenatus und improvisus aus der Kieler Bucht untersuchte, bezeichnet jene Arten als Plankton-
fresser. Dagegen wendet sich Blegvad (1914), der Balanus crenatus, bal anus und improvisus aus dem Belt, von Hven u. a. Stellen studierte, in dem er Seite 101 sagt (das Zitat ist eine wortgetreue Übersetzung aus dem Dänischen): „Rauschenplat, der diese Tiere zu Planktonfressern rechnet, gibt eine Liste der verschiedenen Planktonformen (oder deren Skelette?), die er im Darminhalt von Balanus crenatus und B. improvisus traf; aber die geringe Menge dieser, und die große Menge Sand, „ukendelig Masse", Pflanzenreste und Bodendiatomaceen zeigt deutlich, daß es sich hier in Wirklichkeit um Detritusmassen mit den dazugehörenden Bodenformen handelt.‘ Aus Darmanalysen auf die Nahrung zu schließen ist nicht immer leicht, da der Darm oft mit einer klaren, braunen Flüssigkeit verdaufende Nahrung gefüllt ist, woraus man nicht erkennen kann, was das Tier verzehrt hatte.

Aus dem oben Gesagten dürfte hervorgehen, daß man die Cirripeden nicht als reine Detritus- oder Planktonfresser bezeichnen kann. Einige, und zwar die in geringerer Tiefe lebenden sind mehr Planktonfresser, doch können auch diese den Detritus, der im Plankton vorkommt, aufnehmen.
Die in tiefem Wasser lebenden, wie z. B. Balanus balanis und die übrigen genannten, sind mehr Detritusfresser, da sie hauptsächlich das herabsinkende tote Plankton oder die vom Grunde aufgerührten Schlamm-
partikeln verzehren.

III. Kapitel: Die Anlage der Borsten.

In der Literatur findet man keine Angaben über die Borstenbildung der Gruppe, dagegen wurde jene bei vielen anderen Crustaceen-
gruppen studiert: bei Phyllopoden (Branchi-
pus) von Spangenberg 1875, bei Decapoden (Astacus fluviatilis) von M. Braun 1875, bei
Phyllopoden (Limnadia lenticularis) von M.
Nowikoff 1905, bei Decapoden von A. Laub-
mann 1913, um nur einige Beispiele zu
nennen. Bei allen diesen werden die Borsten
bei der Häutung in Taschen eingesenkt gebil-
det, wobei die Tasche später in den unteren
Teil der Borste über-
geht und der in dieser
liegende Teil zur oberen
Hälfte wird. Diese Bildungsweise dürfte in der Hauptsache für die Crusta-
cean im allgemeinen charakteristisch sein.

Auch bei den Cirripedien werden die Borsten in Taschen gebildet.
Die Borste besteht bei ihrer Anlage aus zwei Teilen: einer äußeren Hülse,
die, eingesenkt in das Bindegewebe, nach oben zu mit der neuen Körper-
cuticula zusammenhängt und nach unten zu in die innere Hülse übergeht,
die die obere Hälfte der Borste ausmacht (Textfig. 2). Die Grenze nach unten
zu ist durch eine Falte scharf markiert. Im jüngeren Stadium ragt die
Spitze der neuen Borste etwas in die Basis der außerhalb sitzenden alten
Borste hinein. In späteren Stadien können Verschiebungen eintreten, indem
die Spitze nicht mehr in die Borstenbasis hineinragt, sondern diese verläßt

Textfig. 2. Lepas anatifera.
Längsschnitt durch ein Segment mit Borsten in Bildung.
a alte, b neue Cuticula. Vergr. 500 mal.
eine Ausstülzung auch in ihrem in die Körperformicula übergehenden Teil bildet. Auch bei den Cirripeden kann man in einigen Fällen eine auf gleiche Weise vor sich gehende Borstenbildung beobachten; bei Naupliuslarven von Alcippe lampas (Textfig. 20) habe ich nämlich Stadien der Borstenausstülzung gefunden, die am ehesten an Nowikoffs Stadium 18 f. Taf. XX. 1905 erinnern. Bei Alcippe würde die Borstentasche im schmalen Cirrus nicht Platz finden, weshalb die äußere Hülse schon von Beginn an eine Ausstülzung aus dem Cirrus bildet.

Ich hatte Gelegenheit, die Borstenbildung bei einer großen Zahl vonGattungen, wie Pollicipes, Scalpellum, Lithotrya, Lepas, Balanus und Chthamalus zu studieren. Alle Borsten, selbst die eigentümlichen bei Pollicipes auf Cirrus I und II, und auch mehr vorspringenden Teilen, wie z. B. dem Schwanzvorsprung der Naupliuslarven (Textfig. 9 e und Groom's Fig. 165 Pl. 28 1894) vorkommenden, werden in Taschen gebildet. Diese Bildungsweise ist auch dem Raume angemessen, da der Vorsprung, z. B. bei Naupliuslarven mit jedem Stadium an Länge zunimmt und so vorzeitig Löcher in die alte Cuticula sprengen könnte.

Andere, weniger herausstehende Teile, wie die Zähne der Mandibeln, die Stacheln der Maxillen oder die Lateralhörner der Naupliuslarven werden dagegen nicht in derartigen Taschen angelegt.

IV. Kapitel: Larven und Larvenentwicklung.

a) Larvenformen.

I. Ordnung Thoracica.

Scalpellum scalpellum L.

Scalpellum gibberum C. W. Aurivillius, 1894.

Bei dieser Art fehlen die umherschwimmenden Nauplius- und Meta-
aupliusstadien; die Larven werden in der Mantelhöhle des Muttersieres bis zum Cyprisstadium ausgebildet. Wieweit auch hier ein deutliches
Naupliusstadium bestünde, konnte ich aus dem Material nicht entscheiden; sollte ein solches fehlen und sich das Ei bei der Teilung direkt zum Metanauplius entwickeln, so könnte man von einer Verkürzung der Entwicklung sprechen. Wie dem auch sei, jedenfalls dürfte hier im Vergleich mit jenen Arten, die freilebende Stadien aufweisen, die z. B. eine für das Schwimmen besser geeignete Form erhalten und wahrscheinlich auch mehrere Häutungen durchmachen, eine Vereinfachung bestehen. Gleichartige Stadien

Fig. 5. *Scapellum gibberum* Auriv.

a Metanaupliuslarve Vergr. 45 mal.
b Cyprislarve. Vergr. 45 mal.
c Haftantenne derselben. Vergr. 135 mal.
d Caudalanhang der Cyprislarve. Vergr. 135 mal.
Sinnesborste. 3. drittes, 4. viertes Glied der Haftantenne.
Übrige Bezeichnungen wie vorher.

Scalpellum convexum n. sp.

In der Mantelhöhle dieser Art wurden bei verschiedenen Exemplaren sowohl Metanauplius-, als auch Cyprisstadien angetroffen.

Die Metanaupliuslarve (Textfig. 6 a) ist wie bei der vorhergehenden Art spulformig. Ihre Extremitätenpaare unterschieden sich von denen der oben beschriebenen Formen hauptsächlich dadurch, daß das zweite Paar länger und an der Spitze mit einer pinselformig geteilten Borste versehen war. Damit erinnerte die Larve an Sc. Strömii und erosum. Nach Aurivillius besitzt die Borste Sinnesfunktion. Das dritte Extremitätenpaar wird von zwei kürzeren Fortsätzen repräsentiert. Länge: 0.78 mm.

Die Cyprislarve (Textfigur 6 b) stimmte in der Hauptsache mit der vorhergehenden Art, auch hinsichtlich des dritten Gliedes der Haftantenne überein. Als einzigen Unterschied fand ich die geringere Größe der Larven. Länge: 1.38 mm.

Textfig. 6. Scalpellum convexum n. sp.
a Metanaupliuslarve, Vergr. 96 mal. b Cyprislarve, Vergr. 45 mal.
Bezeichnungen wie vorher.

Scalpellum compactum Borradaile, 1916.

Bei dieser Art wurden in der Mantelhöhle Metanaupliuslarven angetroffen, die hinsichtlich der Ausbildung der Extremitäten, besonders der des zweiten Paares, mit der vorhergehenden Art übereinstimmten. Das Material ließ aber keine nähere Untersuchung und Abbildung zu. Länge: 1.03 mm. Cyprislarven wurden nicht gefunden.
Scalpellum ventricosum Hoek, 1907.

Diese Art trug in der Mantelhöhle Cyprislarven, die das in Textfig. 7a abgebildete Ausselien zeigten. Das dritte Glied der Haftantenne (Textfig. 7b) glich in der Hauptsache dem der übrigen Scalpellum-Arten. Eine Ab-

weichung bestand darin, daß die in den Ecken und der Mitte der Haft-

Tetraclita divisa n. sp.

In der Mantelhöhle dieser Art wurde bei einem Exemplar eine Meta-
aupliuslarve, bei einem anderen viele Cyprislarven angetroffen, welche
beide Formen für dieses Genus vorher noch nicht bekannt waren.

Die _Metaauplius-
larve_ war schlecht kon-
serviert, weshalb davon
keine Figur gegeben
werden kann. Die La-
teralhörner waren deut-
lich ausgeprägt. Die Larve ist nicht spul-
förmig ausgezogen, son-
dern eher rundlich und
trägt am hinteren Ende
 einen Fortsatz mit der
Cirrenanlage. Die Extre-
mitäten weniger redu-
ziert, das zweite und
dritte Paar besitzt noch
beide Rami deutlich ent-
wickelt; das dritte Paar
ist am kürzesten. An den
Spitzen sämtlicher Fort-
sätze befinden sich Bor-
sten. Länge: 0·84 mm.

Die Cyprislarve ist spulförmig aus-
gezogen und trägt pigmentierte Augen
(Textfig. 8 a). Die Cirren sind aus einem
doppelgliedrigen Protopoditen und zwei seg-
mentierten Rami zusammengesetzt, der Cau-
dalanhang ist doppellig. Die Haftanlagen
(Textfig. 8 b) der Antenne sind auch hier von größtem Interesse; sie ist
anders als die der oben beschriebenen _Scalpellum_-Arten und erinnert mit
ihrem abgerundeten Rand eher an _Lepas_ und _Balanus_. Die Scheibe ist
aber nicht wie bei _Balanus_ verlängert, sondern wird distal weiter. An
ihrem Rande sitzen zahlreiche feine Borsten und in einer in ihrer Mitte
liegenden Vertiefung befindet sich eine Papille, an der die Cementdrüse
ausmündet. Das äußerste Glied der Haftantenne hat eine seitliche Stellung
und trägt lange Borsten an der Spitze. Länge: 0·62 mm.

Verruca strömia O. F. MÜLLER, 1776.

Im Capitulum fand ich spulformige *Embryonalstadien* mit einem deutlichen Naupliusauge, jedoch ohne Differenzierung der Extremitäten (Textfig. 9 a). Länge: 0‘18 mm.

Das erste Naupliusstadium wurde teils in der Eihülle (Textfig. 9 b), teils frei (Textfig. 10) gefunden und erinnerte am ehesten an das entsprechende Stadium bei Balanus. Die Lateralhörner waren bei Exemplaren, die eben die Eihülle verlassen hatten, etwas nach unten gerichtet, bei
aber bedeutend kleiner als beim folgenden Stadium. Bezüglich der Segmentanzahl und der Borstenbewaffnung kann auf die Figuren hingewiesen werden. Dieses Stadium scheint ungefähr eine Woche beizubleiben. Länge: 0,26 mm.

Enditenanhänge, deren verschiedenes Aussehen Textfig. 11 wiedergibt und die mit der von Groom 1894 für Cirripedien im allgemeinen gelieferten Beschreibung übereinstimmen. Dieses Stadium der Naupliuslarve gleicht also am ehesten den Balanidenlarven, in gewisser Hinsicht, wie in der Bewaffnung des Labrums aber Lepadomorpha. Und diese Übereinstimmungen erlangen besonderes Interesse dadurch, daß Verruca auch in vielen anderen Charakteren sowohl Balanomorpha als auch Lepadomorpha gleicht. Länge: 0·38 mm.

Das Metanaupliusstadium wurde nicht angetroffen, dagegen fand ich die bisher noch nicht beschriebenen Cyprislarven.

Die Cyprislarve (Textfig. 12) ist ihrer Form nach langgestreckt, spulförmig, nach hinten zu stärker ausgezogen. Das Auge ist pigmentiert. Das erste Glied der Haftantenne ist ziemlich lang, das zweite etwas kürzer, das dritte trägt eine der bei Scalpellum vorkommenden am ehesten gleichende, wenn auch durch das Fehlen der Borsten vereinfachte Haftenrichtung. Das vierte Glied ist schmal und trägt Borsten an der Spitze. Länge: 0·22 mm.

II. Ordnung Acrothoracica.

Alcippe lampas Hancock, 1849.

Seite 114: „Die Borsten zum Teil in der Weise gegliedert, daß das äußere Glied wie die Tuben eines Fernrohrs in das innere Glied eingeschoben erscheint." Die genannten Verfasser scheinen also der Ansicht zu sein, daß dies das definitive Aussehen der Borste sei. Bei der Untersuchung zahlreicher Larven fand ich ganz richtig diese Form der Borsten. An solchen Exemplaren war auch oft der Fortsatz am hinteren Teil des Körpers mit einer Falte versehen; diese konnte auf den Borsten länger oder kürzer sein. Schon deshalb und in Anbetracht dessen, was ich vorher hinsichtlich der Borstenbildung bei den Cirripeden gefunden hatte, vermutete ich, daß es sich hier nur um junge Stadien von Nauplien handelte, die sowohl die Borsten als auch den Caudalstachel noch nicht auszustrecken vermochten hatten. Das stimmt auch gut mit dem oben über die Borstenbildung Gesagten überein, daß nämlich die untere Hälfte der Borste wie eine Hüls e um die obere angelegt wird. Voll entschieden wurde die Frage erst, als ich Exemplare mit ganz ausgestreckten Borsten auftraf, die keine Hüls e mehr besaßen, jedoch durch eine unbedeutende Falte die Stelle angaben, wo sich eine befunden hatte. Länge: 0:55 mm.
III. Ordnung *Rhizocephala.*

Peltogaster paguri H. Rathke, 1842.

Die Extremitäten entbehren der Enditen, was sicherlich für die gesamte Rhizocephalengruppe gelten dürfte. Länge: 0·21 mm.
Peltogaster sulcatus Lilljeborg, 1861.

Von dieser Art erhielt ich drei Stadien von Naupliuslarven.

Stadium I. Die Larven gleichen wohl in der Hauptsache dem folgenden Stadium, unterscheiden sich aber von diesem darin, daß der untere Teil nicht so langgestreckt, sondern abgerundet ist. Diese Larve (Textfig. 14 b) läßt sich leicht vom entsprechenden Stadium bei P. paguri durch das pigmentierte Auge und den mit einem kürzeren Abdominalanhang versehenen, breiteren unteren Teil unterscheiden. Die Lateralhörner sind etwas nach unten gebogen, Enditen fehlen. Das Rostrum stimmt mit dem der vorhergehenden Art überein. Dieses Stadium gleicht, nach den Figuren zu urteilen, den von Lilljeborg (1861, Pl. III, Fig. 46) und von Guerin-Ganivet 1911 Fig. 2 abgebildeten Naupliuslarven von Peltogaster microstoma Lilljeborg, 1861. Das gibt auch eine Stütze für die Annahme, daß P. microstoma mit P. sulcatus identisch sei, worauf schon Malm 1882 hinwies. Länge: 0,25 mm.

Stadium II (Textfig. 15 a) weicht vom vorhergehenden in einigen Hinsichten ab. Der untere Teil wurde gleich den beiden mit feinen Stacheln versehenen Abdominalanhängen etwas mehr verlängert, wodurch die Larve eine spitzigere Form erhält. Von den Larven der Art P. paguri ist sie jedoch durch breitere Fortsätze unterschieden. Die Lateralhörner sind im Vergleich mit denen des vorhergehenden Stadiums mehr nach außen gerichtet. Das Auge ist ebenfalls stark pigmentiert, das Labrum wie bei der vorhergehenden Art. Länge: 0,27 mm.

Stadium III (Textfig. 15 b) hat die Abdominalanhänge noch mehr verlängert und auch mit feinen Borsten versehen; ich finde es am ehesten mit der von Delages (1887, Pl. XXII. 2) abgebildeten Sacculina-Larve übereinstimmend, wenn auch diese von geringerer Größe ist. Länge: 0,36 mm.

b) Die Larvenentwicklung und deren Verlegung in die Mantelöhle des Muttertieres.

Textfig. 15. *Peltogaster sulcatus.*

a Naupliuslarve Stadium II, b Stadium III. Vergr. 83 mal. Bezeichnungen wie vorher.

Hieraus geht hervor, daß vier weitere, mit Larvenentwicklung in der Mantelhöhle ausgestattete *Scalpellum*-Arten gefunden wurden. Diese sind teils Tiefseeformen, teils aber antarktische Littoral- oder Sublittoralformen. *Sc. ventricosum* Høek 1907 ist eine typische Tiefenform, dagegen kann *Sc. gibberum* nicht als solche bezeichnet werden, da diese Art in 18 m (Patagonien) bis 150 m Tiefe gefunden wurde, also die Sublittoralzone nicht überschreitet. Diese, gleichwie *Sc. convexum* n. sp. und *Sc. compactum* Borradaile, 1906 aus antarktischen Lokalen können wohl am ehesten mit den von Aurivillius beschriebenen arktischen Arten verglichen werden. Hinsichtlich einer anderen *Scalpellum*-Art, *Scalpellum scalpellum* L., die in geringerer Tiefe vorkommt, scheint, da bisher nur das jüngste Naupliusstadium konstatiert ist, eine Unklarheit zu herrschen. Dieses Stadium wurde in der Mantelhöhle des Muttertieres angetroffen. Hält man *Sc. scalpellum* im Aquarium, so kann man zwar die Tiere dazu bringen, die Naupliuslarven auszulassen, aber deren Form und die Weise des Schwimmens scheinen zu zeigen, daß sich diese Larven nicht für die freischwimmende Lebensweise eignen. Die Äußerung Høeks 1909 über diese Art ist sicherlich berechtigt. Er sagt auf Seite 293: „Wenn auch nicht in so starkem Maße als bei den Tiefseearten scheint somit auch bei *Sc. vulgare* die postembryonale Entwicklung eine abgekürzte zu sein.“

Bei den operculaten Cirripedien war vorher noch kein Fall der Verlegung der Larvenentwicklung in die Mantelhöhle bekannt; deshalb war
Tabelle über bekannte Formen von Cirripedien mit in die Mantelhöhle des Muttertieres verlegter Larvenentwicklung.

<table>
<thead>
<tr>
<th>Arten</th>
<th>Beschreibung der Larven</th>
<th>In der Mantelhöhle gefundene Stadien</th>
<th>Tiefe in m</th>
<th>Fundorte und Verbreitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalpellum strömiii</td>
<td>Hoek 1883</td>
<td>Metanauplius</td>
<td>72—1570</td>
<td>Nordatlantisch</td>
</tr>
<tr>
<td>"</td>
<td>C.W. Audriulius 1894 a, b</td>
<td>Cypris</td>
<td>110</td>
<td>Nordsee</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td>46—750</td>
<td>Karisches Meer, Barents-See</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td>350—600</td>
<td>Antillen, Westindien</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td>590—890</td>
<td>Nordsee, Skagerrak</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td>1744</td>
<td>N. W. Atlanten, 53° 34' N. Lat., 52° 1' W. Long.</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td>137—150</td>
<td>S. von W. Falklandsinseln, S. Atlanten</td>
</tr>
<tr>
<td>"</td>
<td>Der Verfasser</td>
<td>Cypris</td>
<td>100</td>
<td>S. von La Plata</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td>18—93 6</td>
<td>Patagoniens Ostküste</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td>53</td>
<td>Magalhaensstraße</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td>75—310</td>
<td>Südgeorgien, S. Atlanten</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td>150</td>
<td>Grahams Region, S. Atlanten</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td>2675</td>
<td>Südgeorgien, Falklandsinseln</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td>2050</td>
<td>S. von Timor Sundainseln</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td>geringe Tiefe</td>
<td>Nordwachter Javasse</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Metanauplius</td>
<td></td>
<td>Sumatra, Königinnebay</td>
</tr>
<tr>
<td>Tetraclita divisa</td>
<td>"</td>
<td>Cypris</td>
<td></td>
<td>S. Chile</td>
</tr>
<tr>
<td>Cryptophialus minutus</td>
<td>Darwin 1854</td>
<td>?</td>
<td></td>
<td>Weißes Meer</td>
</tr>
<tr>
<td>*Dendrogaster aster-</td>
<td>Knipowitsch 1892</td>
<td>Cypris</td>
<td></td>
<td>Sagamibucht, Japau</td>
</tr>
<tr>
<td>Thompsonia japonica</td>
<td>Häfele 1911</td>
<td>Cypris</td>
<td>20—150</td>
<td>Sagamibucht, Japau</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Cypris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>Krüger 1911 a</td>
<td>350</td>
<td>Sagamibucht, Japau</td>
</tr>
</tbody>
</table>
es überraschend, in der Gattung *Tetraclita* bei der Art *T. divisa* voll-
entwickelte Metanauplius- oder Cyprislarven in der Mantelhöhle anzu-
treffen. Außerdem ist besonders Gewicht darauf zu legen, daß diese Art
der tropischen Meere in geringer Tiefe gefunden wurde. Das Genus *Ver-
rucha*, das im allgemeinen eine Tiefseeeggattung vorstellt, dürfte eine den
Scalpellum-Arten gleiche Entwicklung haben, doch weiß man darüber nichts
Näheres. Die Art *Verruca strömia*, die ich in Bolusklärn studieren konnte,
besitzt keine der oben beschriebenen gleiche Entwicklung, da die Tiere
nur in 30 bis 100 m Tiefe leben. Die beiden angetroffenen Nauplius-
stadien sind einer freischwimmenden Lebensweise angepaßt; ob die Larven
aber in Stadium I oder II das Muttertier verlassen, konnte ich nicht mit
Bestimmtheit entscheiden. Zwar fand ich, daß Aquariumexemplare die
Larven in Stadium I freilassen, doch kann das kaum als ein Beweis
angesehen werden, da die Larven von Aquariumtieren im allgemeinen
leichter ausgestoßen werden. Stadium II aber ist bestimmt freischwimmend,
da ich viele Exemplare davon in Planktonproben aus dem offenen Meer
vorhand.

Innerhalb der Ordnung *Acrothoracica* scheint die Gattung *Crypto-
phialus* eine abgekürzte Entwicklung mit Cyprislarven in der Mantelhöhle
zu besitzen; doch liegen darüber nur wenige Angaben vor. Die Gattung
Alocippe hat dagegen wohl ausgebildete Naupliuslarven, die die Mantelhöhle
wahrscheinlich in diesem Stadium verlassen.

Die Rhizocephalen enthalten sowohl Formen mit Naupliuslarven,
wie z. B. *Pellogaster* und *Sacculina*, als auch solche, die keine derartigen
haben, wie z. B. *Thompsonia* und *Dendrogaster*. Bei letzteren kann man
von einer wirklich weitgehenden Verkürzung der Entwicklung sprechen.
Für die geltend gemachte Ansicht, daß man es bei den Rhizocephalen mit
einer Tendenz zu tun habe, die freien Larvenstadien zu unterdrücken,
spricht auch der einfache Bau der Larven.

Eine Lösung der Frage, welche hydrographischen Faktoren als die
Verlegung der Entwicklung in die Mantelhöhle bewirkend angesehen werden
cönnen, ist nicht leicht zu geben. Bei ausgesprochenen Tiefseeformen und
den in geringerer oder größerer Tiefe lebenden arktischen und antarktischen
liegt bei der Hand anzunehmen, daß die niedrige Temperatur ein aus-
schlaggebender Faktor wäre. Jedoch könnte in diesem Fall die Tatsache,
dazu auch bei *Tetraclita divisa*, einer Form aus geringen Tiefen tropischer
Meere, die Entwicklung in der Mantelhöhle stattfindet, mit dem oben Go-
sagten nicht in Einklang gebracht werden; denn die Tiere leben in sehr
hoher Temperatur. Noch ist wohl zu wenig bekannt, als daß der Versuch
einer Lösung dieser interessanten biologischen Frage gestattet wäre.
V. Kapitel: Studien über den Bau der Maxillardrüse bei den Cirripeden.

Von diesen erwiesen sich die erstgenannten Färbungen als für das Studium der Drüse hinreichend, von den Fixierungen gaben Zenkers und Bouins Lösungen das beste Resultat.
Geschichtliche Übersicht.

Wie oben erwähnt, wurde die Drüse bei den Cirripedern oft falsch gedeutet. Eine kurze geschichtliche Übersicht der hier behörenden Literatur ist zwar schon vorher gemacht worden, aber da eine Reihe Berichtigungen ausgeführt werden kann und außerdem neue Arbeiten hinzugekommen sind, dürfte es angezeigt sein, eine vollständige Besprechung zu geben.

BERNDT 1903 beschreibt den Exkretionsapparat bei Alcippe lampas HANCOCK. Er erwähnt hier zwei sackartige Bildungen, „Nierensäcke“, mit kubischem Epithel, die sich gegen den Mund zu in einen blind endenden Gang verschmälern. BERNDT geht nicht näher darauf ein, welchen Teilen diese Säcke entsprechen, weshalb sich eine Kontrolluntersuchung bei Alcippe als notwendig erwies; eine solche wird weiter unten, auf Seite 123 gegeben.

Schließlich kann die schon erwähnte Arbeit Defners 1910 genannt werden, in der durch das Auffinden von Trichterzellen bei zwei Cirripeden die Drüse eine in der Hauptsahe richtige Deutung erhielt. Die histologischen Einzelheiten dieser Arbeit sollen in der folgenden Darstellung näher geprüft werden.
Eigene Untersuchungen.

Die hier untersuchten Arten sind:

Balanus balanoides L.
Balanus crenatus BRUG.
Oxynaspis celata D.
Chthamalus challengeri HOEK
Anelasma squalicola D.
Lithoglyptes indicus AURIV.
Verruca strömia O. F. MÜLLER
Alcippe lampas HANCOCK.
Scalpellum scalpellum L.

I. Ordnung Thoracica.

1. Unterordnung Balanomorpha.

Balanus balanoides L.

Das Endsäckchen (Textfig. 16 a, b) ist beim Munde am breitsten und verschmälernt sich, wie bei Balanus tintinnabulum, nach oben zu gegen die Mündung in den Harankanal. Die Wand des Endsäckchens ist unbedeutend gefaltet, was Balanus, zum Unterschied von den gestielten Cirripeden, bei denen das Endsäckchen mehr gelappt ist, auszeichnet. Das Endsäckchen ist auch beträchtlich kleiner als der Harankanal, sein breiterer Teil ungefähr bei der Basis von Cirrus I. Das Epithel liegt nicht dicht an, sondern ist etwas gefaltet, wodurch eine Anzahl Lakunen gebildet wird. Das Organ wird auf diese Weise von Blut umspült. Zwischen Harankanal und Endsäckchen sind die Hohlräume weniger ausgebildet. Gleichwie bei Balanus tintinnabulum findet man auch bei B. balanoides ein auf der Basalmembran sitzendes zylindrisches oder kubisches Epithel, dessen Zellen von wechselnder Form (Tafel II* Fig. 1) und zuweilen gegen die Basis zu verschmälernt sind. Der Kern ist oval und liegt der Basis näher. DEFNER erwähnt bei B. tintinnabulum ein distal vom Kerne gelegenes Körnchen, das sich gleich dem Kerne färbe; in gewissen Zellen konnte ich dieses auch bei B. balanoides beobachten. In den distalen Teilen der Zellen geht eine Abschnürung von Exkretkugeln vor sich, weshalb diese Zellen in Form und Höhe verschieden sein können (Taf. II* Fig. 1). (Darüber mehr im Kapitel über die Exkretion.) Unterhalb der Basalmembran findet man im Bindegewebe elastische, miteinander zu einem Netzwerk anastomosierende Fäden, die aber hier nicht so stark wie um den Harankanal herum entwickelt sind.
Textfig. 16. Balanus balanoides L.
Schiefer Querschnitt (schematisch) durch den Körper parallel zum aufsteigenden Oesophagus in der Region des unteren Schlundganglions. a Höher geführter Schnitt, b tiefer unten, die Drüse im Längsschnitt, el elastische Fäden, ug unteres Schlundganglion, M Magen, end Endstückchen, hk Harnkanal, tr Trichterapparat, hl Harnleiter, 2 M zweite Maxille, l Lakunen, m Muskeln. Vergr. 54 mal.

haben, ist sicher. In gewissen Serien konnte man eine gegen das Lumen
dunklere Abgrenzung bemerken (Tafel II* Fig. 2). Auch verdient hier
darauf hingewiesen zu werden, daß bei anderen untersuchten Arten
keinerlei Stäbchenneuticula angetroffen wurde. De Füner erwähnt aber eine
deutliche von ungefähr gleicher Höhe wie das Epithel. Nach meinen
Beobachtungen kann ich mich also über diese Frage nicht mit Be-
stimmtheit aussprechen. Die Zellgrenzen waren mehr oder weniger un-
deutlich, die Kerne im Horizontalschnitt rund, im Querschnitt abgeplattet.
Hinsichtlich des Plasmas sagt De Füner 1910 auf Seite 7: „In ausgedehnten
Bezirken des Harnkanals zeigt das Plasma eine deutliche Anordnung in
Strängen senkrecht zur Oberfläche.“ Dergleichen konnte ich in den von
mir untersuchten Serien nicht finden.

Unter einem auf einer feinen Basalmembran auftretenden Epithel
befindet sich eine Lage starker, anastomosierender Bindegewebsfäden, die
auch das darunter liegende Bindegewebe durchsetzen. Die am nächsten
liegenden Bindegewebszellen sind, wie auch De Füner hervorhebt, rundlich,
mehr oder weniger epithelartig (Tafel II* Fig. 2). Zwischen dem Epithel
des Endstückehens und dem des Harnkanals finden wir eine oder mehrere
Lagen Bindegewebszellen mit Hohlräumen zwischen diesen Zellen und dem
Epithel. In jenem Teil des Harnkanales, in dem die Mündung des End-
sückehens liegt, fehlen die Bindegewebszellen. Dieser Teil der Maxillar-
drüse ist es, der hier das größte Interesse erweckt. Auch bei Balanus
balanoides konnte ich einen aus Schließzellen zusammengesetzten Trichter-
apparat feststellen, der früher einmal, wie schon gesagt, von De Füner für
Balanus tintinnabulum konstatiiert wurde. Diese Trichterzellen sind in
ihrer Form länglich rund und größer als die daneben liegenden Zellen,
weshalb sie sich von diesen deutlich unterscheiden. Der Basis näher liegt
der Kern (Tafel I* Fig. 1 u. 2). Die von De Füner angegebene dicke
Membran der Trichter- oder Schließzellen konnte ich nicht finden,
auch wird dergleichen für andere Crustaceen, wie z. B. Cumaceaen
oder Isopoden, nicht beschrieben. Ungefähr in der Mitte des äußeren
Teiles der Zellen befindet sich eine dunkler gefärbte Plasmapartie.
Hinsichtlich der Anzahl der Zellen gibt D. drei für B. tintinnabulum
an. Es dürfte nicht leicht sein, darüber mit Bestimmtheit zu entscheiden,
da man nicht immer einen genauen Querschnitt des Trichterapparates
erhalten kann. Nach einer Serie zu urteilen, scheinen hier vier Zellen
um das Lumen angeordnet zu sein. Ebenso häufig wie De Füner konnte
ich einen Muskelring um diese Zellen beobachten und das stimmt mit
dem überein, was P. Lenn 1911 für die nahestehenden Copepoden fand.
Er sagt darüber auf S. 23: „Einen Muskelring, wie ihn Mégilich
beschreibt, konnte ich nirgends finden.“ Dagegen haben aber die höheren
Crustaceen, wie viele Forscher beobachteten, einen deutlich ausgebildeten
Ringmuskel.

Balanus crenatus Brug.

Hinsichtlich dieser Art können wir uns kurz fassen, da sie in allem Wesentlichen mit dem Vorhergehenden übereinstimmt.

Das Endsäckchen hat kubische oder knollenförmige Zellen mit großen Kernen. Auch bei dieser Art gelang es mir, den Trichterapparat nachzuweisen. Seine Schließzellen sind groß und angeschwollen; wie viele den Trichter ausmachten, konnte man aus den Schnitten nicht entnehmen, da nur zwei getroffen waren (Tafel I* Fig. 4).

Der **Harnkanal** ist mit Fortsätzen versehen, die sich sowohl dorsal, als auch ventral vom Schlundganglion vorfinden, ohne daß jedoch eine Verbindung eintrat. In Schnitten sehr junger Individuen lagen die Fortsätze oberhalb (dorsal) des Schlundganglions einander sehr nahe, wie auch die Lakunen um das Ganglion besonders wohlentwickelt waren.

Der kurze **Harnleiter** (Tafel II* Fig. 3) war hier im Längsschnitt getroffen. Das Lumen ist nach unten zu gering, nach oben, gegen den

Chthamalus challengeri Hoek.

Von dieser Gattung, die bisher hinsichtlich der Maxillardrüse noch nicht untersucht wurde, hatte ich nur in Alkohol konserviertes Material aus Japan zur Verfügung, erhielt aber doch ziemlich gute Bilder der Drüse.

Das Endsäckchen (Textfig. 17) zeigt seiner Form nach den gleichen Bau wie bei Balanus, d. h. es ist nicht gelappt oder gefaltet. Die Zellen sind weniger gut konserviert, weshalb sie auch nicht abgebildet werden. Die Kerne sind deutlich und ziemlich groß.

Der Trichterapparat. Auch bei dieser Gattung wurden Schließzellen angetroffen. Diese wurden teils im Querschnitt (Tafel I* Fig. 3), der zeigt, daß der Trichterapparat aus vier Zellen zusammen-
gesetzt ist, teils im Längsschnitt (Tafel II* Fig. 4) erhalten. Die Zellen unterscheiden sich, wie schon vorher beschrieben wurde, von den sie umgebenden durch ihre Größe. Der Kern liegt bei der Basis, umgeben von einem dunkleren Teil des Plasmas. (Der Kern der einen Zelle ist im Längsschnitt, Tafel II* Fig. 4, nicht getroffen.) Die Zellen lagen, wie es oft der Fall ist, aneinander, sicherlich als Folge von Muskelkontraktionen bei der Konservierung. Das Plasma ist im oberen Teil lichter. Die Grenze zwischen den Zellen ist deutlich markiert. Außerhalb der Schließzellen finden sich, wie die Figur zeigt, Exkretklumpen. Die Zellen scheinen auch hier eine Fortsetzung des Endstückchens vorzustellen. Auch bei Chthamalus wurden keine Muskeln um den Trichterapparat beobachtet.

Vom unteren Teil der Drüse, dem Harnleiter, wurden deutliche Schnitte der Zellen erhalten, weshalb dieser Teil abgebildet wird (Tafel II* Figur 5). Die Figur zeigt sowohl die innere als auch die äußere Mündung, bei welcher letzterer man deutlich den Übergang zum Körperepithel sieht.
Der Gang ist relativ kurz, nach oben zu weiter. Die Zellen sind kubisch mit außerordentlich großen Kernen, die Basalmembran ist deutlich. Im oberen Teil liegen zahlreiche Muskeln, die für das Erweitern und Schließen des Kanals von Bedeutung sind. Die Cuticula tritt entlang der ganzen Länge des Ganges stark hervor.

Verruca strömia Müller.

Die Endäckchen erinnern am ehesten an *Balanus,* d. h. sie stellen unbedeutend gelappte Säckchen dar.

Wegen der Kleinheit des Objektes war es schwer, in Serien die Trichterzellen anzutreffen. In einer Schnittserie glückte es mir jedoch, eine Trichterzelle zu erhalten, die sich hinsichtlich ihrer Größe und des an der Basis gelegenen Kernes mit den oben beschriebenen in Übereinstimmung zeigte. Muskeln um den Trichter fehlen (Tafel I* Fig. 5).

3. Unterordnung *Lepadomorpha.*

Scalpellum scalpellum L.

Diese Art wurde schon von *Hoek* 1883 untersucht, der auch eine Reihe Bilder bringt, doch ist die Deutung des Organs, wie schon im geschichtlichen Überblick erwähnt wurde, eine andere als die nunmehrige. Er legt das Hauptgewicht auf den unteren Teil, den Harnleiter, der das eigentliche Nephridium vorstelle.

Das Endsäckchen ist hier, wie bei den Pedunculaten gewöhnlich, gelappt (Textfig. 19a, b), doch nicht so stark, wie es *Defere* für *Conchoderma* fand. *Kochler* 1892 weist auch mit Recht darauf hin, daß das Endsäckchen bei *Scalpellum* nicht so stark wie bei *Conchoderma* und *Lepas* gelappt sei. Das Epithel besteht aus kubischen, mehr oder weniger keulenförmigen Zellen, deren Kerne nahe der Basis liegen. Aus dem oberen Teil werden Zellen abgeschmiert (Tafel II* Fig. 7). Unter der basalen Membran finden sich, wie gewöhnlich, elastische Fäden, bei älteren Exemplaren wird
die Basalmembran sowohl im Endsäckehen, als auch im Harnkanal mehr oder minder verdickt.

Der Harnleiter (Tafel II* Fig. 6) wurde von HOEK 1833 beschrieben und als das eigentliche Nephridialorgan angesehen, eine Entdung, der nach dem oben Gesagten nicht mehr zugestimmt werden kann. Die von mir erhaltenen Schnitte stimmen mit HOEKs Figuren gut überein. Der obere Teil ist trichterförmig, das Lumen darunter klein. Die Zellen sind kubisch und haben große, rundliche Kerne. An der einen Seite des oberen, trichterförmigen Abschnittes sitzen ein mehrschichtiges Epithel und schief gegen dieses gerichtete Muskeln.

HOEK sagt darüber auf Seite 24: „To judge from the great number of nuclei, the cell mass, at least on one side, is formed of more than a single layer.“ Muskeln finden sich um den ganzen oberen Teil, im unteren Teil liegen elastische Fäden vom Epithel des Harnleiters bis zum äußeren Epithel, die für die Erweiterung des Harnleiters Bedeutung haben. Hinsichtlich der auch bei dieser Art bis zum Harnkanal hinaufreichenden Cuticula scheint sich HOEK zu irren, wenn er auf Seite 24 sagt: „The
Textfig. 19.

a Scalpellum scalpellum L. Schematischer Querschnitt durch das ganze Tier. b Längsschnitt durch dasselbe.
a Ovidukt, at Atrium des Oviduktes, hk Konnektive, oe Oesophagus. Übrige Bezeichnungen wie vorher.
c Organopsis cellula D. Schiefer Längsschnitt. Vergr. a, b 49 mal, c 31 mal.
chitinous membrane which clothes the interior of the duct is not present at the surface of the cells which border the narrow channel." Es wäre doch eigentümlich, wenn sich die Cuticula nicht über diesen ganzen Teil, der eine Einstülpung von außen darstellt, erstrecken würde (siehe Taf. II*, Fig. 6.)

Oxynaspis celata D.

Von dieser Gattung stand mir nur in Alkohol konserviertes Material zur Verfügung, weshalb über die Topographie der Drüse nur wenige Angaben geliefert werden können.

Die **Endsäckchen** (Textfig. 19 c) erinnern ihrer Form nach am ehesten an **Scalpellum**, d. h. sie sind etwas, doch nicht so stark wie bei **Lepas**, gelappt. Das Epitel gleicht dem bei **Scalpellum**, weshalb es hier nicht näher beschrieben zu werden braucht, und auch die Harnkanäle stimmen ihrer Form nach mit **Scalpellum** überein. Die bei **Conchoiderma** und **Scalpellum** angetroffene Muskelanordnung mit Muskeln, die von einer in der Mitte liegenden Sehnenpartie aus mehr oder weniger strahlenförmig zur Körperwand ziehen, war hier sehr deutlich. Der **Trichterapparat** konnte wegen der schlechten Konservierung nicht nachgewiesen werden; da aber die Drüse im übrigen keinerlei Reduktion zeigt, darf man wohl annehmen, daß auch hier ein Trichterapparat bestehe.

Anelasma squalicola L.

Auch von dieser Gattung besaß ich nur in Alkohol konserviertes Material, weshalb keine eingehendere Beschreibung gegeben werden kann.

Das **Endsäckchen** (Textfig. 20 a, b) hat ungefähr das gleiche Aussehen wie bei **Scalpellum**. **Koechler** 1892 sagt darüber auf Seite 1216: "Ce sont des saus à cavité simple chez les Balanes et l'**Anelasma**." Wie aus der Figur hervorgeht ist auch hier eine Lappung vorhanden, die der bei **Scalpellum** gleicht. Die schlechte Konservierung verhinderte den Nachweis des Trichterapparates.

Der **Harnkanal** besitzt ein großes Lumen (Textfig. 20 a, b). Die beidseitigen Kanäle haben Fortsätze gegeneinander, doch ohne Verbindung. Die Muskeln strahlen von einer in der Mitte gelegenen Sehnenpartie aus.

Der **Harnleiter** hat im unteren Teil kubisches, im oberen mehr zylindrisches und auch mehrschichtiges Epithel. Das Organ weist also bei dieser halbparasitischen Gattung nicht die geringste Reduktion auf.

II. Ordnung. Acrothoracica.

Diese Ordnung, die die bohrenden Cirripedien enthält, weicht in vielen Hinsichten von der oben beschriebenen ab. Hierher gehören nach **Berntds** letzter, im Jahre 1907 gemachter Gruppierung folgende, auf drei Familien
Textfig. 20. *Anelasma squalicola* L.

a, b Schiefe Längsschnitte (schematisch). Vergr. 31 mal.

Lithoglyptes indicus Auriv.

Die Maxilladrüse ist für die Genera Cryptopliialus und Alcippe schon früher beschrieben worden, hier kann eine Beschreibung für Lithoglyptes und Alcippe geliefert werden.

Lithoglyptes indicus Auriv.

Hinsichtlich des histologischen Baues der oben genannten Teile kann zumindest gesagt werden, daß das Endsäckchen ein hohes, exkretorisches Epithel, der Harnkanal das gewöhnlich beschriebene Plattenepithel hat.

Diese unvollständige Beschreibung von Lithoglyptes wurde hauptsächlichst mit aufgenommen, um Vergleiche mit der nahe verwandten Gattung Alcippe, die ich an besonders konserviertem Material untersuchte, anstellen zu können. Lithoglyptes hat, gleich Cryptophialus, eine in keiner Weise reduzierte Maxillardrüse; das aber ist, wie wir sehen werden, bei Alcippe der Fall, wenn auch nicht in dem Grade, wie es Berndt angibt. 1)

Alcippe lampas Hancock.

Wie schon in der historischen Übersicht erwähnt wurde, ist die Maxillardrüse bei Alcippe von N. Berndt 1903 untersucht worden.

An mitten hindurchgehenden Querschnitten erweisen sie sich ihrer Form nach an der Außenseite konkav, an der Innenseite convex, im ventralen und dorsalen Teil nähern sie sich meistens der Außenwand. Sie stellen bei Alcippe einfache, nicht, oder nur unbedeutend gelappte Säcke vor. Auffallend sind die die Endsäckchen umgebenden Lakunen, die hier größer und besser als bei den anderen untersuchten Formen entwickelt sind. Diese Hohlräume werden da und dort von Fortsätzen aus der Wand des Endsäckchens geteilt. Nach Berndt sollen diese Fortsätze hauptsächlichst von der Basalmembran der Endsäckchenzellen gebildet werden, doch ist dies nicht der Fall; denn diese Fortsätze gegen die Wand zu enthalten auch Endsäckchenzellen, die an beiden Seiten von Basalmembran bekleidet sind. In diesen Teilen des Endsäckchens fehlt das Lumen. Zweifellos haben wir es hier wohl mit einer Anordnung zu tun, die das von großen Hohlräumen umgebene Endsäckchen in richtiger Lage zu halten hat, wie ja schon Berndt 1903 auf Seite 423 angibt. Übrigens findet man gleichartige Anordnungen, wenn auch nicht so ausgeprägt auch bei den typischen Cirripedien.

Das Epithel des Endsäckehens ist ein typisch exkretorisches. Das Plasma der Zellen ist mit einer körnigen Substanz gefüllt, die Basalmembran wohlentwickelt. Wie Berndt beschreibt, variieren die Zellen
ihrer Form nach zwischen kubischer und zylindrischer Ausbildung und
sind im oberen Teil mehr oder weniger rundlich. Dort kann man wie bei
den typischen Cirripedien beobachten, wie Teile abgeschnürt werden. Berndt
sagt darüber auf Seite 423: „Zellen, deren eine Hälfte sich abgeschnürt
hätte und frei ins Innere des Schalendrüsenlumens hineingefallen wäre,
könnte ich nicht nachweisen.“ Die Kerne können nach Berndt unregel-
mäßige Formen annehmen. Derartige Bilder sah auch ich an schlechter
konserviertem Material, an besser konserviertem waren die Kerne jedoch
rund und regelmäßig, was man wohl als das Normale ansehen kann.
(Tafel II*, Fig. 8.)

Von besonderem Interesse war der Nachweis eines auch bei diesem
Genus vorkommenden Trichterapparates, da hiedurch Übereinstimmungen
mit Thoracica erhalten werden und man so mit Sicherheit aufzeigen
konnte, welcher Teil dem Harnkanal angehört. Der Trichterapparat ist
vorher bei den Formen von Acrothoracea, die keine wie bei Alcippe vor-
kommende Reduktion der Maxillardrüse aufweisen, nicht gefunden worden;
deshalb kann man aus dem hier gemachten Fund schließen, daß sicherlich
auch die weniger reduzierten Acrothoracea einen Trichterapparat besitzen.
Seine Zellen sind wie bei den anderen untersuchten Formen durch ihre
Größe und das weniger stark gefärbte Plasma ausgezeichnet. Deutliche
Kerne liegen in der Nähe der Basis. Es ist schwer exakt anzugeben,
wie viel Zellen den Trichter bilden, da dieser nicht im Querschnitt
getroffen wurde, doch dürften es nicht mehr als 3 bis 4 sein.1) (Tafel I*,
Fig. 7.)

Der Harnkanal (Textfig. 21). Diesem Abschnitt entspricht wohl in
Berndts Beschreibung der obere Teil der Niere, der sich, nach B. gegen
den Mund zu in einen blind endenden Kanal verschmälert. Gleich Berndt
konnte auch ich keine Mündung an der II. Maxille auffinden. Diese
Mündung tritt sonst deutlich durch den mit einer dicken Chitinecuticula ver-
sehenen, von außen aus gebildeten Harnleiter hervor. Das Lumen dieses Teiles
des Harnkanals kann unbedeutend sein oder überhaupt fehlen. Der Harn-
kanal erstreckt sich hauptsächlichst in der Längsrichtung des Tieres und
ist außerordentlich klein, was sicherlich damit zusammenhängt, daß er seine
Funktion als ausführendes Organ verloren hat. Er liegt an der Innenseite
des Endsäckchens. Das Epithel (Tafel II*, Fig. 9) ist hier, wie es stets
der Fall ist, mehr abgeplattet als im Endsäckchen. Im obersten Teil des
Harnkanals, d. h. in dem vom Munde am weitesten entfernten, findet man
dorsal von der ventral gelegenen Ganglienmasse eine quergerichtete, aber
lumenlose Zellenverbindung der beidseitigen Kanalepithel. Das erinnert
an die von den Endsäckchen zur Außenwand verlaufenden Zellstränge.

1) Wegen der Schwierigkeiten beim Schneiden von Alcippe gelang es mir nur
bei zwei von etwa 30 angefertigten Serien, die Trichterzellen zu erhalten.
Den Haruleiter konnte ich hier nicht finden; ob ein solcher bei Alcippe einmal vorhanden war, ist schwer zu sagen. Da er aber bei der oben beschriebenen Gattung Lithoglyptes besteht, ist es wohl wahrscheinlich, daß er bei Alcippe rückgebildet wurde.

Über die Deutung der Organteile bei den Cirripediden und die Exkretion.

Zweifellos sind diese von DEFFNER genannten Wolken Exkret; das ist aber kein Hindernis für die Annahme, daß die Exkretion gerade durch Abschnürung von Zellteilen aus den Zellen geschehe. Diese Teile können später zu Wolken aufgelöst werden. Wahrscheinlich ist auch, daß diese beim Durchgehen durch den Trichterapparat mehr oder weniger aufgelöst werden, da man solche Ballen nie im Harnkanal antrifft. BRUNTZ und besonders GRUEL lieben diese Exkretion durch Abschnürung hervor und geben auch Abbildungen dafür. Bilder, die ich in Schnitten besonders von Balanus balanoides (Tafel II.*, Fig. 1) und Scalpellum (Tafel II.*, Fig. 7) erhielt, können die Auffassung, daß hier die Exkretion durch Abschnürung von Zellteilen vorschiege, nur stützen. Wie die Figuren zeigen, findet man oft viele Reihen solcher abgeschnittener Teile übereinander und sowohl darin, als auch in den Zellen zahlreiche gelbe Exkretkörper. Aus diesem Grunde kann die Form der Zellen zwischen zylindrisch-keulenförmiger und niedrig-kubischer variieren. Wie gesagt, werden diese runden Teile später aufgelöst, so daß das Exkret in Form von Wolken übrigbleibt. Daß eine gleichartige Exkretion auch bei anderen Crustaceen vorkommen kann, zeigt z. B. MARCHANTS Untersuchung über die Verhältnisse bei den Decapoden 1892. Vielleicht ist sein Ausspruch auf Seite 169 außer für die Cirripeden auch für andere Crustaceengruppen anwendbar: „Des observations précédentes, nous pouvons déjà conclure que l’urine, chez les Crustacés, malgré la grande limpidité qu’elle présente et sa grande fluidité, n’est pas due à une simple filtration, mais à une véritable sécrétion consistant dans l’élimination de parties cellulaires.“

ist schwer zu sagen. Man kann wohl eine Ausführung der Harnprodukte auf osmotischem Wege annehmen.

Zusammenfassung.

dieser Gang blind und der Harnkanal hat hier, da er seine Funktion als ausführender Teil verloren hat, ein nur unbedeutendes Lumen. Das Epithel des Harnkanals ist mehr oder weniger abgeplattet.

Systematischer Teil.

VI. Kapitel: Systematische Charaktere, die besondere Beachtung verdienen.

1. Mundteile.

Krüger sagt über diese Übersicht auf Seite 62 Folgendes: „Es wäre vielleicht ganz interessant, eine zusammenfassende Untersuchung der Mundteile, die natürlich auch die Variabilität derselben berücksichtigen müße, anzustellen."

Da ich ein reichhaltiges, aus ungefähr 100 Arten, die 24 Gattungen zugehörten, bestehendes Material zur Verfügung hatte und mir außerdem auch altes, vorausbestimmtes Material vorlag, führte ich in Zusammenhang mit der Bestimmung einen Vergleich der Mundteile durch. Dieser brachte mir wertvolle Hilfe für die Ermittelung der Verwandtschaftsverhältnisse.
In vielen Fällen kam ich zu ganz anderen Resultaten als Krüger; da meine Übersicht aber auf ein größeres Material gegründet ist, dürfte sie in vielem richtiger sein. Wohl bin ich überzeugt, daß meine Übersicht mit der zukünftigen Erweiterung der Kenntnisse der Tierformen hier und dort kleine Veränderungen fordern wird; doch glaube ich die großen Züge, um die es sich ja hauptsächlich handelt, gegeben zu haben.

Meine Resultate, die von Krügers in vielem abweichen, stimmen jedoch soweit mit seinen Ergebnissen überein, als auch ich der Überzeugung bin, man könnte aus dem Aussehen der Mundteile zu „gewissen verwandtschaftlichen Verhältnissen“ zwischen den Familien und Gattungen kommen. Ich fand also, daß sich in den Mundteilen gute systematische Charaktere für die Beurteilung der Verwandtschaft der Gattungen zeigen. Nachdem eine Übersicht des Aussehens der Mundteile gegeben

1) Die Mundteile der Zwergmännchen wurden nicht mit aufgenommen, da diese oft stark rückgebildet sind.
sein wird, sollen die Resultate bei der Besprechung der Einteilung in Familien näher behandelt werden. Auch für die Artbeschreibungen haben die Mundteile großen Wert; ich habe deshalb, soweit es möglich war, versucht, das Aussehen der Mundteile in die Artdiagnosen aufzunehmen.

Pedunculata.

Labrum. Die Kaufläche des Labrums ist bei sämtlichen Genera der Pedunculaten in der Hauptsache gleichartig ausgebildet, d. h. sie ist mehr oder weniger konkav, variierend von halbkreisförmig bis beinahe gerade. Doch findet man bei sämtlichen Genera keine Andeutung eines mittleren Einschnittes, was jedoch bei den Operculaten oft der Fall ist. Hinsichtlich der Zahnbewaffnung zeigen sich Unterschiede zwischen den Gattungen, indem bei einigen Borsten, bei anderen Zähne überwiegen. **Krüger** gibt für **Pollicipes** an, daß dieser Genus Borsten, jedoch keine Zähne habe, und daß **Scalpellum** Zähne, jedoch keine Borsten aufweise. Ein so generelles Urteil darf man nicht fällen. Ich fand z. B. bei untersuchten Formen von **Pollicipes** sowohl zahlreiche Borsten, als auch dazwischen zerstreute Zähne. Der vorspringende Teil des Labrums kann in der Länge und in gewissen Fällen (z. B. bei **Scalpellum Rathbunae, Textfig. 26 a, b**), auch in der Form etwas variieren. Im großen und ganzen scheint mir aber, daß das Labrum der Pedunculaten seinen Typus ziemlich unverändert behalten habe. Desto größere Verschiedenheiten weisen die übrigen Mundteile auf.

Eine nähere Übersicht über die Palpentypen der verschiedenen Genera dürfte notwendig sein.

Übrige Genera (außer Lepas) mit mehr oder minder konischem gegen die Spitze zu schmälerem Palpus, der in Einzelheiten recht variieren kann, weshalb keine nähere Gruppierung möglich ist. Borsten entlang des Oberrandes und an der Spitze, mitunter an den Seiten des vorderen Teiles.

1) Die römischen Ziffern, die den Typus der Mundteile angeben, entsprechen jenen der zusammenfassenden Übersichtstabellen.
IV. Gewisse Formen besaßen einen Palpus, der als ein Übergang zu den vorhergehenden Typen angesehen werden konnte. Das waren einige Arten der Genera *Scalpellum* und *Oxyanaspis* (Textfig. 38 b); doch schlossen sich diese am ehesten an IV an.

V. Die Genera *Lepas* (Fig. 39 bei Krüger 1911 a) und *Conchoderma* (Textfig. 41 b) haben einen typisch konischen Palpus, der sich gegen Spitze und Basis verschmäler. Da der Palpus dieserGattungen auch in geringen Einzelheiten große Übereinstimmungen zeigt, trenne ich die beiden nahe verwandten Genera von den übrigen mit konischen Palpus versehenen.

VI. Die hier aufgenommenen Genera haben einen ziemlich variierenden, konischen Palpus, weshalb eine nähere Gruppierung nicht möglich ist. Hierher gehören *Poecilasma*, *Octolasmus*, *Heteralepas*, *Paralepas* und die Mehrzahl der *Scalpellum*-Arten. (S. die Figuren bei den Artbeschreibungen.)

I. Die Mandibeln bei *Pollicipes* (Krüger 1911 a, Fig. 2–5) und einer Reihe *Scalpellum*-Arten, die zu den Gruppen *Galactica* (Krüger 1911 a,
Textfig. 12), Smilium (Krüger 1911 a, Fig. 19, 20), Euscalpellum und Scalpellum (s. str.) (Krüger 1911 a, Fig. 30) gehören, zeichnen sich durch die Variation der Zahnanzahl des Vorderrandes aus. Es sind 3—9, oft von wechselnder Größe und unregelmäßig angeordnete Zähne. Die untere Ecke der Mandibeln in der Regel pektiniert, d. h. in kleine Zähne geteilt. Als Beispiele seien genannt: Scalpellum Peroni, scorpio, trispinosa, sexcornutum, Stearnsii und scalpellum. Der Vollständigkeit halber kann erwähnt werden, daß auch die von Annandale 1916 b beschriebene, zum Subgenus Glyptelasma gehörende Art (Il. gigas eine derartige varierende Mandibel besitzt. Im allgemeinen konnte ich doch feststellen, daß Poeclasma und das nahestehende Genus Ortolasmis eine nur unbedeutend varierende Zahnanzahl haben.

Für die übrigen Pedunculaten ist es auszeichnend, daß die Zähne von ungefähr gleicher Größe und ziemlich regelmäßig angeordnet sind.

II. Als einen für diese sehr gewöhnliche Typus fand ich eine Mandibel mit in der Regel drei (ausnahmsweise vier) Zähnen und einer pektinierten unteren Ecke. Zwischen den Zähnen ist die Pektinierung unbedeutend. Höher gehören die Mehrzahl der Scalpellum-Arten (Beisp. Textfig. 31 b) und das Genus Ibla (Textfig. 36 c).

III. Von diesen unterscheidet sich das Genus Lithotrya (Textfig 34 c) durch kräftige Pektinierung zwischen den Zähnen. In Ausnahmsfällen kann eine Mißbildung hinsichtlich der Zahnanzahl vorkommen; dann treten an Stelle von drei Zähnen bis zu sechs auf (wie Grevel 1902 b, Pl. 12, Figur 28 abgebildet). Doch hatten acht von mir untersuchte Individuen der Gattung Lithotrya den normalen Typus der Mandibeln, weshalb diese Mißbildung als ziemlich selten betrachtet werden muß.

IV. Die Mandibeln der Genera Lepas (Krüger 1911 a, Fig. 36), Conchoderma (Textfig. 41 c) und Alephas (Textfig. 42 b) stimmen in der Hauptsache überein. Die Mandibel ist kräftig und hat ungefähr fünf wohlentwickelte Zähne. Pektinierung am Ober- oder Unterrand oder an den Seiten der Zähne. Untere Ecke von wechselndem Aussehen, mit mehr oder minder starker Pektinierung, die in extremen Fällen zahnartig oder auch reduziert (s. Textfig. 41 d von Conchoderma) sein kann. Trotz dieser scheinbar großen Variation müssen die Mandibeln der drei genanntenGattungen als einander sehr ähnlich angesehen werden.

V. Daran schließt sich die Mehrzahl der Heteralepas- (Krüger 1911 a, Fig. 60) und Paralepas-Arten (Textfig. 44 b) an. Hier weisen die Mandibeln drei, ausnahmsweise vier Zähne auf und haben eine mehr oder weniger zahnartige untere Ecke, die mitunter auch pektiniert sein kann. Übereinstimmung mit den vorhergehenden Formen besteht hauptsächlich darin, daß die Zähne in der Regel, meistens am Unterrand, eine kräftige Pektinierung besitzen. Durch das Fehlen der Pektinierung, welches oft von
starker Abnutzung der Mandibeln verursacht ist, können diese Formen zum Genus Poecilasma überleiten. Andererseits schließt sich Poecilasma durch die Pektinierung der Zähne (Krüger 1911 a, Fig. 72 und Hoek 1907 a, Pl. I, Fig. 17) an die vorhergehenden Genera an. Man erhält hier somit leicht Übergangstypen.

1. Als erste Gruppe faß ich folgende Genera und Subgenera zusammen: Pollicipes (Krüger 1911 a, Fig. 6), Lithotrya (Textfig. 34 d), Scalpellum (Textfig. 23 d), Oxynaspis (Textfig. 37 f), Ibla (Textfig. 36 e) und Paralepos (Textfig. 45 e). Bei diesen kann der Vorderrand der I. Maxille gerade, schwach konvex oder konkav sein. Die untere Ecke ist bei einigen stärker vorspringend, wodurch Übergangstypen zur folgenden Gruppe erhalten werden. Der mit Borsten besetzte Vorderrand kann ein bis zwei Einschnitte tragen. Wo sich, wie in den meisten Fällen, nur ein Einschnitt vorfindet, ist dieser gewöhnlich im oberen Teil. Bei einigen Formen jedoch, besonders beim Genus Oxynaspis (Textfig. 37 f und 38 d) und bei einer Reihe Scalpellum-Arten (Textfig. 27 c), befindet er sich auf der Mitte des Vorderrandes.

II. Von den hervorgerufenen kann man jene Formen unterscheiden, deren I. Maxille den oberen Teil des Vorderrandes eingebuchtet und
oben von kräftigen Stacheln begrenzt hat. Die untere Hälfte wird dadurch stark vorspringend, konvex. Eine derartige I. Maxille findet man bei den Genera *Poccilasma* (Textfig. 48 f), *Octolasmis* und *Megalasma*, wie auch beim Subgenus *Heteralepas* (Textfig. 43 e). Ist der untere Teil weniger vorspringend, wie z. B. bei *Octolasmis grayi* und *pernula* (Annandale 1909 a, Fig. 9), so erhält man Übergangstypen zu den vorhergenden Formen. Aus der Übersicht geht hervor, daß die beiden Subgenera *Heteralepas* und *Paralepas* zu verschiedenen Gruppen gerechnet werden. Zwar ist der Unterschied zwischen diesen nicht so wesentlich, doch jedenfalls deutlich. *Heteralepas* weist eine im unteren Teil stärker vorspringende I. Maxille auf als *Paralepas*. Dagegen könnte man vielleicht einwenden, daß sich dieses Verhältnis nicht ergibt, wenn man z. B. Hoeks Fig. 12 auf Pl. IV, 1907 a, von *Alepas* (s. str.) *morula* betrachtet, die die I. Maxille mit beinahe genauem Vorderrand zeigt. Diese Art wird nach Krüger zu *Heteralepas* gerechnet. Da diese Einordnung aber unrichtig ist, stimmt die Spezies gut in meine Übersicht. Denn soviel ich aus Hoeks Beschreibung ersehen kann, muß diese Art in das Subgenus *Paralepas* gestellt werden.

III. Einen besonders gut abgegrenzten Typus bilden die drei Genera *Lepas* (Krüger 1911 a, Fig. 37), *Conchoderma* (Textfig. 41 d) und *Alepas* (Textfig. 42 e). Bei diesen ist die I. Maxille mit treppenförmigen borstentragenden Absätzen versehen. Dadurch wird der untere Teil ebenfalls stärker vorspringend als der obere.

III. Die II. Maxille des Subgenus *Heteralepas* (Textfig. 43 d) ist in der Breite stärker ausgezogen, ist mit oder ohne Einschnitt auf dem Vorderrand und hat Borsten, die in drei Gruppen geteilt sind: zwei am
Vorderrand und eine im hinteren Teil des Oberrandes. Das Gleiche auch bei einigen *Scalpellum*-Arten (Beisp. *Sc. persona* Annandale 1916 b, Pl. VI, Fig. 5, *Sc. cuneicostum* Textfig. 32 e). Obere Ecke des Vorderrandes abgerundet.

IV. Wenn die Borsten des Vorderrandes stärker zusammenhängen (also im ganzen nur zwei Borstengruppen vorhanden sind) und der Vorderrand selbst mehr oder weniger konvex wird, wie es bei einer Reihe *Paralepas*-Arten, z. B. *P. typica* (Textfig. 45 d) der Fall ist, so erhält man einen Typus, der sich den übrigen Formen nähert, die einen geraden oder konvexen Vorderrand, nicht in Gruppen geteilte, sondern sowohl entlang des Vorder-, als auch des Oberrandes zusammenhängende Borsten haben.

V. Man könnte unter diesen übrigen solche Formen unterscheiden, die einen deutlicher markierten, mit einander einen rechten Winkel bildenden Vorder- und Oberrand haben. Dies wären die Genera *Oxynaspis* (Textfig. 37 g), *Poecilasma* (in parte), z. B. *P. Koempferi* (Textfig. 46 d) und *Octolasmis*-Arten. Diese Unterscheidung wäre im Gegensatz zu

VI. jenen Formen, die Ober- und Vorderrand mehr zusammenhängend und eine abgerundete obere Ecke haben. Damit erhält die Maxille einen mehr oder minder deutlichen kreisförmigen Umfang. Dies gilt von den Genera *Lepas* (Krüger 1911, Fig. 38), *Conchoderma* (Textfig. 41 f), *Alepas* (Textfig. 42 f) und *Poecilasma* (in parte) (Textfig. 48 g).

Zusammenfassender Vergleich der Mundteile der Pedunculaten:

<table>
<thead>
<tr>
<th>Genus</th>
<th>Palpus</th>
<th>Mandibel</th>
<th>I. Maxille</th>
<th>II. Maxille</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollicipes</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalpellum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lithotrya</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bla</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxynaspis</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Lepas</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Conchoderma</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Alepas</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>*subg. Hetero-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lepas</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paralepas</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poecilasma</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octolasmis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operculata.

Labrum: Stimmt bei den primitiven Operculaten der Form nach mehr mit dem der Pedunculaten überein.

Für die übrigen Operculatagenera finde ich eine Gemeinsamkeit darin, daß das Labrum in der Mitte mit einem deutlichen Einschnitt ("notched") versehen ist. Der Rand des Labrums kann übrigens ebenso wie die Bewaffnung variiert.

II. An I. schließt sich an, chest das Genus Tetraclita (Textfig. 84 a) an, dessen Labrum auf der Mitte einen deutlich abgesetzten, aber doch seichten Einschnitt trägt. An jeder Seite sitzen einige (ungefähr 3) Zähne und zerstreute Borsten. Die Zähne sind niedrig und breit. Der Rand des Labrums senkt sich gegen die Mitte, die Seitenteile sind hoch.

Die Genera Chelonobia, Coronula, Tabucinella und Xenobalanus scheinen hinsichtlich des Labrums recht gut übereinstimmen. Auch hier sind die Seitenteile wie bei der vorhergehenden Gruppe hoch. Der Einschnitt ist deutlich, jedoch nicht so tief wie bei den folgenden Formen, zum Beispiel dem Genus Balanus.

III. Die zwei erstgenannten Genera, nämlich Chelonibia (Textfig. 85 a) und Coronula (Textfig. 86 a), unterscheiden sich von den anderen durch das Vorkommen dicht sitzender Zähne entlang des ganzen Randes, zu beiden Seiten des Einschnittes.

IV. Dagegen entbehren die Genera Tubicinella (Textfig. 87 a) und Xenobalanus (Textfig. 88 a) diese Zähne.

Das mit den vorhergehenden nahe verwandte Genus Platylepisc (Textfig. 89 a) erinnert durch die geringe Anzahl Zähne (ungefähr 3) zu beiden Seiten des Einschnittes an das Genus Balanus. Da ich aber nur eine Art der Gattung studieren konnte, stelle ich diese nur als einen Übergangstypus auf. Auch fehlen Figuren der anderen Arten, die einen Vergleich gestatten würden.

V. Als eine Gruppe möchte ich jene Formen zusammenfassen, die den Oberrand des Labrums beinahe gerade oder schwach konvex haben, wodurch die den Einschnitt tragende Mittelpartie nicht so stark vorspringend wird. Hierher gehören die Mehrzahl der Balanus-Arten (Textfig. 67 a) und Elminius (Textfig. 77 a).

VI. Der andere Typus zeigt bei seinen ausgeprägtesten Formen die Mittelpartie hoch gelegen, d. h. die Ränder des Labrums sind vom Einschnitt aus abfallend. Hierher gehören die Genera Acosta (Textfig. 75 a) und Coreis (Textfig. 78 a) und die Subgenera Armatobalanus (HOEK 1913, Pl. XXI 17) und Membranobalanus. Die zwei letzgenannten schließen sich auch hinsichtlich anderer Charaktere an Acosta an.

als konisch oder keulenförmig beschrieben. Ich folge hier den bei den Pedunculaten gegebenen Definitionen dieser Ausdrücke.

I. Ein deutlich konischer Palpus findet sich nur bei einer geringen Anzahl Formen, wie Chthamalus Hembeli (Textfig. 55 a); an der Spitze, entlang des Oberrandes und in einer Linie über dem Unterrand sitzen Borsten. Der Palpus des Genus Verruca (Textfig. 49 a) ist länger als der eben beschriebene und trägt Borsten an der Spitze und entlang des Oberrandes.

II. Die Form des Palpus bei Verruca leitet zum Genus Tetraclita (Textfig. 84 b) über. Er ist hier langgestreckt, verschränkt sich aber nicht so stark gegen die abgerundete Spitze. Wir haben es hier mit einem Zwischenotypus zwischen dem typisch konischen und dem typisch keulenförmigen Palpus zu tun. Man könnte ihn keulenförmig ohne deutlichen Vorderrand nennen. Oberrand konkav oder gerade. Borsten entlang des Oberrandes und an der Spitze. Darwin sagt 1854, Seite 325 über den Palpus von Tetraclita: „The palpus usually have parallel sides, but are club-shaped in T. purpurascens and costata.“ Bei allen (fünf) von mir untersuchten Arten, darunter auch T. purpurascens, war der Palpus von gleichartigem Ausschn. den von Darwin angegebenen Unterschied konnte ich nicht finden. Einen ähnlichen, wenn auch nicht so stark verlängerten Palpus trug das Genus Cresia (Textfig. 78 a); eine Reihe Balanus-Arten (z. B. Fig. 2, auf Pl. XX. Hoek 1913), eine Reihe Chthamalus-Arten (z. B. Chth. Challenger, Textfig. 51 d) und das Genus Pyrgoma (Textfig. 79 a), die alle ohne deutlichen Vorderrand des Palpus sind, dürften hieher gehören.

IV. Einige Formen des Genus Balanus, die den Subgenera Armato- und Membranobalanus (Textfig. 72 c) angehören, und der Genus Acasta (Textfig. 73 b) weichen von den zuletzt aufgezählten durch einen stark verlängerten, keulenförmigen Palpus ab. Die obere Ecke des Vorder- randes ist in eine Spitze ausgezogen, wodurch der Palpus leicht ein konisches Aussehen erhalten kann. Die gegenseitige Ähnlichkeit dieser nahe verwandten Formen, die im allgemeinen dem Leben in Spongien angepaßt sind, gilt auch hinsichtlich anderer Teile.
V. Der Genus Chelonibia (Textfig. 85 b) zeigt einen Palpus, der am ersten mit dem gewisser Balanus-Arten übereinstimmt, d. h. er ist keulenförmig, nicht schmäler werdend. Vorderrand ziemlich undeutlich markiert. Dieser Typus wird hier so selbständig aufgestellt, weil er in Form und Borstenbewaffnung nicht vollständig mit Balanus übereinstimmt.

Der Palpus der übrigen Genera bildet eine Art Zwischenstufe zwischen konisch und keulenförmig. Er ist kurz und breit, sein Vorderrand geht ohne Grenze in den Unterrand über.

VI. Von diesen stimmen Coronula (Textfig. 86 b) und Tubicinella (Textfig. 87 b) miteinander darin überein, daß der Palpus nicht wie bei den zwei übrigen saeculiert ist. Oberrand konkav, mit Borsten, Unterrand konvex, in den Vorderrand übergehend, mit dem Oberrand vorne eine mehr oder minder deutliche Spitze bildend. Borsten an der Spitze und in einer Linie über dem Unterrand.

VII. Die Genera Xenobalanus (Textfig. 88 b) und Platylepas (Textfig. 89 b) zeigen Ähnlichkeit miteinander darin, daß der Unterrand Anheftung zur Saeculierung aufweist und daß die Borsten des Unterrandes längs diesem sitzen. Im übrigen stimmt dieser Palpentypus in der Hauptsache mit VI überein.

I. Als ersten Typus rechne ich eine Mandibelform, die wir auch bei den Pedunculaten, z. B. bei Scalpellum und Ibla fanden. Diesen Typus repräsentieren einige primitive Gattungen der Operculaten wie: Octomeris (O. intermedia und brumnea) (Textfig. 61 b, 59 e), Chthamalus (II. Gruppe), Textfig. 56 b) und Verrucia (in parte, Textfig. 50 a). Die Mandibeln dieser Genera sind mit drei Zähnen und einer pektinierten unteren Ecke versehen, die in typischen Fällen die größten Stacheln auf ihrer Mitte trägt; die Stacheln nehmen über- und unterhalb der Mitte an Größe ab.

II. Tritt zwischen den Zähnen eine kräftige Pektinierung in Form kleiner Stacheln auf, wie es bei einer Art der Gattung Chthamalus, nämlich Chth. Hembeli (Textfig. 55 d) der Fall ist, so erhalten wir eine Mandibel, die derjenigen der Gattung Lithotrya unter den Pedunculaten gleicht. Die Typen I und II schließen sich meiner Meinung nach nahe aneinander.

Innerhalb der beiden Genera Chthamalus und Octomeris finde ich zwei Haupttypen ausgebildet. Der erste ist der oben beschriebene, der andere kann auf folgende Weise charakterisiert werden:

III. Der Vorderrand der Mandibel hat zu oberst vier Zähne, von denen Zahn 2—4 zweiteilig sein können. Untenhalb dieser Zähne ist am Vorder-
und eine wohlentwickelte kammartige Partie, die zu unterst in der unteren Ecke mit einigen schmalen Stacheln abschließt. Dieses ist bei Chthamalus (I. Gruppe, Textfig. 52 c), Octomeris angularis (Textfig. 62 b) und der Mehrzahl der Tetraclita-Arten, z. B. bei T. serrata und Wiréni (Textfig. 84 c) der Fall.

IV. Ebenso wie wir von Gruppe I eine Art trennen konnten, die durch die Pektinierung abweicht, sich aber nahe an I anschließt, können wir auch hier eine Art, nämlich Chthamalus scabrosus (Textfig. 54 b) von den anderen Chthamalus-Arten unterscheiden. Diese weicht von Gruppe III dadurch ab, daß auch die untere pektinierte Partie des Vorderrandes zerstreute kleine Zähne zwischen den Stacheln trägt.

V. Hierher rechnen ich Coronula (Textfig. 86 c) und Tubicinella (Textfig. 87 c), die auch hinsichtlich anderer Mundteile übereinstimmen. Für diese gemeinsam sind die zwischen den Zähnen der Mandibeln sitzenden Nebenzähne, was schon von Darwin 1854 hervorgehoben wurde.

VI. Derartige Zähne kommen dagegen bei Xenobalans nicht vor, welche Gattung ich hier als besonderen Typus aufstelle (Textfig 88 c).

VII. Einen weiteren Typus bildet der nahe verwandte Genus Platybopus (Textfig. 89 c); doch rechnen ich diesen bloß provisorisch, da ich nur schlecht konserviertes Material dieser Gattung zur Verfügung hatte. Nach Darwin finden sich auch hier Nebenzähne („intermediate teeths“), obwohl dies aus der von mir gegebenen Abbildung nicht so deutlich hervorgeht, die eine stärker abgenutzte Mandibeln zeigt. Hierin besteht also eine Ähnlichkeit mit Coronula und Tubicinella. Die Pektinierung der unteren Ecke war unbedeutend, aber gleich hoch mit den Zähnen, mehr den folgenden Genera z. B. Acasta und Elminius gleichend.

nach unten zu in der Regel von einem oder einigen Stacheln abgeschlossen, die bei den meisten Formen zu gleicher Höhe wie die Zähne vorspringen. Hierher gehören die Genera Balanus (Textfig. 68 a), Elminius (Textfig. 77 b), Creusia (Textfig. 78 b), Pyrgoma (Textfig. 79 c), Acasta (Textfig. 75 b), Verruca (in parte, Textfig. 49 b), Tetradita (in parte, Textfig. 83 b) und Chelonibia (Textfig. 85 c). Der Genus Chelonibia weicht ein wenig durch nicht hervorspringende untere Stacheln ab.

1. Die Mehrzahl der Arten der Genera Chthamalus (Textfig. 56 c) und Octomeris (Textfig. 59 d) besitzen eine I. Maxille, die sich nach vorne nicht verschmälert und zwei Einschnitte am Vorderrand trägt, wodurch die Stacheln in drei Gruppen geteilt werden.

II. Die nahe verwandten Genera Coronula (Textfig. 86 d), Tubicinella (Textfig. 87 d) und Xenobalanus (Textfig. 88 d) müssen meiner Meinung nach besonders behandelt werden. Für diese Formen sind die am Vorderrand sitzenden kurzen und kräftigen Stacheln auszeichnend. Der Vorderrand zeigt (bei Coronula und Tubicinella) zwei Einschnitte. Die I. Maxille verschmälert sich dadurch, daß der Unterrand konvex ist, in der Regel nach vorne. Das kann aber auch bei einer Reihe Balanus-Arten der Fall sein.

III. Die übrigen Genera scheinen eine ziemlich variable I. Maxille zu haben, weshalb eine für die Beurteilung ihrer Verwandtschaft bedeutsam volle Einteilung nicht durchgeführt werden kann. I. Maxille in der Regel nach vorne zu schmälern werdend. Geraden Vorderrand mit oder ohne Einschnitt im oberen Teil finde ich bei Arten der Genera Creusia (Textfig. 78 c), Pyrgoma (Textfig. 79 d), Acasta (Textfig. 73 d), Balanus (Textfig. 69 b), Elminius (Textfig. 76 c), Tetradita (Textfig. 84 d) und bei einer Reihe Chthamalus-Arten (Textfig. 54 c), dann bei Octomeris angulosa (Textfig. 62 c), Chelonibia und Platyplepas (Textfig. 89 d). Gewisse Balanus-Arten besitzen einen stärker gebogenen Vorderrand, haben unten eine vorspringende Partie, die ein Paar größerer, dominierender Stacheln trägt (Textfig. 65 a). Ein gleiches findet man beim Genus Verruca (Textfig. 50 b), bei dem der Einschnitt im oberen Teil ziemlich weit ist. Die fünf erstgenannten Genera stehen auch einander in anderen Hinsicht sehr nahe, was unten in einem anderen Zusammenhang weiter behandelt werden soll.

II. Maxille. Darüber sagt Krüger 1911 a, Seite 63: „Chthamalus, Balanus, Acasta ähnlich, fast gleich. Chelonibia, Tetradita abweichend,
unter sich ähnlich.“ Ich finde dagegen Chthamalus und Balanus deutlich unterschieden. Tetraclitla gleich mehr Chthamalus als Balanus. Che- lonibia (Krüger 1911 a, Fig. 124) schließt sich dagegen an den Balanus-Typus an.

I. In die erste Gruppe stelle ich die nahe verwandten Genera Chthamalus (Textfig. 53 e) und Octomeris (Textfig. 61 d), wie auch Tetraclitla (Textfig. 84 e) und verruca (Textfig. 49 d). Bei diesen ist die II. Maxille in typischen Fällen zwiilappig, d. h. durch einen deutlichen, borstenfreien Einschnitt auf der Mitte des Vorderrandes in zwei Partien geteilt, die Borsten tragen. Der Vorderrand wird dadurch mehr oder weniger ausgebildet. Borsten sitzen auch an der Spitze entlang des Vorder- und Oberrandes, spärlich an den Seiten. Der Vorderrand kann mitunter des Einschnittes entbehren, was man auch bei einem ähnlichen Typus (II) der Pedunculaten, z. B. beim Genus Scalpellum findet. Der Vorderrand wird da mehr gerade (Chthamalus Hembeli, Textfig. 55 e), oder mehr oder minder konkav, z. B. bei verruca nera multiradiata (Textfig. 50 c). Die Form der Maxille kann stark, von breit (z. B. Textfig. 56 d) bis schmal (verlängert) (z. B. Textfig. 84 e) wechseln.

II. Zur ersterwähnten Gruppe gehören die Genera Coromda (Textfig. 86 e), Tabicinella (Textfig. 87 e) und Platylepas (Textfig. 89 e).

III. Zur anderen Gruppe rechne ich die Genera Balanus (Textfig. 71 d) Elminius (Textfig. 76 f), Crensitla (Textfig. 78 d), Pyrgoma (Textfig. 79 e), Acasta (Textfig. 73 e) und Chelonibia (Krüger 1911 a, Fig. 124) und Xenobalanus (Textfig. 88 e).

Zu der letzten Gruppe wird also das Genus Xenobalanus gerechnet werden, der aber eigentlich am nächsten mit der ersten Gruppe (II.) verwandt ist. Nach Darwin fehlt dem Genus Xenobalanus das Mentum, und auch ich konnte keines auffinden. Möglich ist, daß das Mentum dieser auch in anderen Hinsichten rückgebildeten Form reduziert wurde und verschwand.
Zusammenfassender Vergleich der Mundteile der Operculaten.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Labrum</th>
<th>Palpus</th>
<th>Mandibel</th>
<th>I. Max.</th>
<th>II. Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verrucosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chthamalus</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Octomeris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tetractita</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coromula</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tubicinella</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Xenobalanus</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Platylepas</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chelonibia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Balanus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acasta</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eliminus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Creusia</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pyrgoma</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fassen wir die Übersicht der Operculaten ins Auge, so erhalten wir das gleiche Ergebnis. Ähnlichkeit der Mundteile besteht z. B. zwischen Coromula, Tubicinella, Xenobalanus und Platylepas (wenn auch nicht vollständig; am größten zwischen Coromula und Tubicinella), zwischen Chthamalus und Octomeris, zwischen Balanus, Aepyas, Eliminus, Creusia und Pyrgoma. Diese wiederkommenden Ähnlichkeiten denten ohne Zweifel auf eine nahe Verwandtschaft.

Die gleiche Erfahrung wird man auch bei einem Vergleich der anderen Charaktere machen; in gewissen Fällen wird die Übereinstimmung

2. Die Cirren.

Eine andere Frage, die die Systematik der Arten sowohl bei Pedunculaten, als auch Operculaten betrifft, ist die nach der Bedeutung der Angaben über die Segmentanzahl der Cirren. Die Anzahl ist ja, wie schon Darwin hervorhob, in gewissen Fällen einer ziemlich großen Variation unterworfen. Darwin nimmt auch die Segmentanzahl der Cirren in die Artbeschreibungen auf. Er sagt 1854, Seite 83: „The number of the segments in each cirrus is in some degree variable and increases with age."

Hier kann betont werden, daß diese Angaben nur unter einer Voraussetzung für die Artbeschreibungen von Bedeutung sein
können, nämlich wenn nicht nur, wie es bisher geschah, die Seg-
mentanzahl der einzelnen Cirren, sondern zugleich auch das
Maß der Individuen angegeben wird, was ich bei den Beschreibungen
durchführe. Für Pedunculaten habe ich die Totallänge der Tiere, für Oper-
culaten die Länge des carinorostralen Diameters angegeben. Es zeigt sich
nämlich, daß, wie schon aus Darwin's Äußerung hervorgeht, jüngere Indi-
viduen einer Art eine geringere Anzahl Cirrensegmente besitzen als ältere
(s. Sc. scalpellum). Deshalb sind diese Angaben für die Kontrolle der Be-
stimmungen von Wert. Übrigens kann als Beispiel auf die im beschrei-
benden Teil zu suchende Behandlung von Sc. ventricosum und Sc. inter-
medium hingewiesen werden.

3. Der Filamentanhang.

Ein anderes Merkmal, das bei der Beurteilung der Verwandtschafts-
verhälttnisse für die Pedunculaten Bedeutung hat, ist der Filamentanhang.
Natürlich können hier Gattungen wie Scalpellum, Ibla, Oxyaspis und
Poecilasma, denen die Filamentanhänge fehlen, nicht in Frage kommen.
Auch muß bei der Entscheidung des systematischen Wertes des Anhanges
Vorsicht walten. Da die Anzahl Filamentanhänge selbst innerhalb des
gleichen Genus außerordentlich variabel sein kann (von 0 bis viele), darf
man nicht so großes Gewicht auf die Anzahl legen. Dagegen ist,
meiner Meinung nach, von Bedeutung, wo die Anhänge am
Körper entspringen. Zahlreiche Filamentanhänge kommen sowohl bei
Conchoderma, als auch bei Alepas und Pollicipes (z. B. P. polymerus) vor.
Daß aber Alepas in näherer Verwandtschaft zu Conchoderma als zu Pol-
licipes steht, glaube ich daraus zu ersehen, daß die Anhänge bei Alepas
und Conchoderma an der Basis der Cirren entspringen, während sie bei
Pollicipes unregelmäßiger über den Körper verteilt sind. Diese Verwandts-
chaft wird auch durch andere Charaktere, z. B. die Mundteile, unter-
stützt. Eine andere Gattung, Heteralepas, trägt einen Filamentanhang an
der Basis von Cirrus I. Auch der Genus Lepas weist an der entsprechen-
den Stelle einen solchen auf, nur daß hier noch mehrere um diesen zer-
streut angeordnet sind. Wo sich aber nur ein Anhang findet, wie bei Lepas
pectinata, geht dieser von genau der gleichen Stelle wie bei Heteralepas
aus. Das bedeutet zweifellos einen gewissen gemeinsamen Ursprung der
beiden Genera oder zumindest eine nähere Verwandtschaft als die zwischen
Heteralepas und z. B. Pollicipes und Scalpellum. Daß aber die Verwandts-
schaft zwischen Lepas und Heteralepas doch recht weit ist, beweist die
geringe Übereinstimmung hinsichtlich der Mundteile. Darauf werden wir bei der Besprechung der Einteilung der Familien näher zu sprechen
kommen.
4. Der Caudalanhang.

Großen Wert hat dagegen der Anhang meiner Meinung nach für die Systematik der Arten. So besteht z. B. der Unterschied zwischen Sc. rubrum und Sc. uniaarticulatum, soviel ich sehen konnte, hauptsächlich darin, daß die erstgenannte Art lange, mehrgliedrige, die letztgenannte kurze, ein-
gliedrige Anhänge besitzt.

5. Die Platten.

Pedunculata. Bei der Systematik wurde großes Gewicht auf die Anzahl und Form der Platten wie auch auf die Lage des Umbo (jenes Punktes, um welchen die Zuwachsflächen gruppiert sind) gelegt. Das führte in vielen Fällen zu Einseitigkeiten, so z. B. bei JOLEAUDS Versuch 1914 a, das Genus Scalpellum nur auf Grund der Platten einzuteilen, was später näher behandelt werden soll. Auch hat man hiervon bei der Beurteilung von Gattungen mit reduzierten Platten wenig Hilfe. Für diese Genera wäre paläontologisches Material der Übergangsformen von Wert. Da man solches aber selten bei der Hand hat, muß man sich wohl mit den Merkmalen der jetzt lebenden Formen helfen.

Die Lage des Umbo auf den Platten, der oft große Bedeutung zugeschrieben wird, erweist sich mitunter als für die Beurteilung der Herkunft von geringerem Gewicht. Bei den nahe verwandten Genera Lepas und Conchodera liegt der Umbo des Scutums und der Carina verschieden, während seine Lage bei den weniger verwandten Genera Paeci-
tasma und Lepas gleich ist. Sicherlich können Verschiebungen des Umbo während der Phylogenie stattfinden, was man während des ontogenetischen Zuwachses vor sich gehen sieht. Platten, die bei zwei nahe verwandten Genera verschiedenen Ursprungs zu sein scheinen, können also als durch Veränderung des Zuwachses entstanden gedacht werden, indem dieser z. B. in einer Richtung aufhörte und in einer anderen zunahm, wodurch eine Verschiebung des Umbo eintrat. Eine derartige, während der Ontogenie erfolgte Verschiebung zeigt die Carina von Sculpellum-Arten (z. B. Sc. gibberum). Um aber zu entscheiden, ob eine derartige Veränderung während der Phylogenie eintrat, ist es notwendig, lebende oder ausgestorbene Über-
gangsformen aufzufinden.

Die Verschiebung der Lage des Umbo bei der Gattung Octolasmis (Dickelaspis) könnte man sich auf folgende Weise entstanden denken. Bei einer großen Anzahl Octolasmis-Arten, z. B. O. trigona (Aurivillius 1894 b, Taf. 2, Fig. 8), liegt der Umbo des Scutums basal; das Scutum ist in zwei Schenkel geteilt, die miteinander einen rechten oder spitzigen Winkel einschließen. Durch Zuwachs der unter dem Orificeum gelegenen Partie des Capitulum und im Zusammenhang damit, daß der Winkel zwischen den Schenkeln stumpfer wird, verändert sich die Lage des Umbo von basal zu subzentral. Die Schenkel werden so entlang des Margo ocellundens verlegt. Ein Beispiel dafür bietet O. angulata (Aurivillius 1894 b, Taf. 2, Fig. 9). Bei dieser Art wurde das basale Segment reduziert und verkürzt; durch dessen vollständige Reduktion kann der Umbo wieder basal werden, was z. B. bei O. bullata (Aurivillius 1894 b, Taf. 2, Fig. 12) der Fall ist.

Eine gleichartige Veränderung kann man bei Conchodera annehmen. Conchodera und Lepas zeigen in vielen Hinsichten große Ähnlichkeit, weichen jedoch unter anderem dadurch voneinander ab, daß der Umbo des Scutums der erstgenannten Gattung zentral, der der letztnannten basal ist. Man kann sich nun denken, daß der Umbo des Scutums durch Zu-

Operculata: Auch bei dieser Gruppe sind die Platten für die Ein-
teilung der Familien und Genera von Bedeutung. Auf die Anzahl der
Platten darf jedoch nicht zu großes Gewicht gelegt werden, da leicht Verwachsungen und Reduktionen vorkommen. Deshalb ist es auch nicht angezeigt, wie Gruvel die Einteilung der Familien auf Grund der Plattenanzahl durchzuführen, was unten näher behandelt werden soll. Auf diese Weise wird z. B. Chthamalus und Balanus, welche Genera sechs Platten besitzen, in eine, Chamaesipho und Elminius mit vier Platten in eine andere Familie gestellt, obwohl die so vereinigten Gattungen voneinander in vielen Hinsichten unterschieden sind. Dagegen stimmen die mit einer verschiedenen Anzahl Platten versehenen Genera Balanus und Elminius hinsichtlich der Mundteile gut überein, was auf eine nahe Verwandtschaft deutet. Chamaesipho schließt sich hinsichtlich der Mundteile an die Chthamalus-Serie an.

Auch die Form der Opercularplatten kann bei der Beurteilung der Verwandtschaftsverhältnisse Verwendung finden, ihre größte Bedeutung hat sie aber hinsichtlich der Systematik der Arten.

6. Anatomische Charaktere.

VII. Kapitel: Besprechung der Einteilung in Familien.

Pedunculata.

Auch PILSBRY 1907 b System ist in einigen Punkten wenig zufriedenstellend. PILSBRY rechnet ebenfalls Lepas und Poecilasma zusammen, scheidet dagegen von Lepas die nahestehenden Genera Conchoderma und Alepas und stellt diese neben Heteralepas, welch letztergenanntes Genus mir mit jenen weniger verwandt zu sein scheint.

Die übrigen zu den Lepadomorphen gehörenden Genera werden von ANNANDALE 1909 a zu der aus mehreren Unterfamilien zusammengesetzten Familie Lepadidae gerechnet. Die Familie ist in typischen Fällen durch den Besitz von fünf verkalkten Platten ausgezeichnet. Auf diese Weise mehrere, in vielen Hinsichten verschiedene Gattungen in eine höhere Einheit zu bringen, scheint mir überflüssig und unrichtig.\(^1\)

In diesem Fall halte ich es für eher annehmbar, wie PILSBRY eine Einteilung in Subfamilien durchzuführen, die zu einer großen, alle Pedunculaten umfassenden Familie Lepadidae gerechnet werden. Ich schlage hier vor, die Familie Lepadidae nur als die Genera Lepas, Conchotherma und Alepas (sensu stricto) umfassend aufzunehmen (s. unten).

Unter den mit fünf Platten versehenen Formen wird hier als erste Familie der Genus Oxynaspis erwähnt, der sowohl von PILSBRY, als auch von ANNANDALE als eine Subfamilie gerechnet wird. Gleichwie der Genus Ibla scheint auch dieser von den übrigen wohl unterschieden zu sein und vor allem durch seine spezielle Anpassung an das Leben auf Hornkorallen abzuweichen. DARWIN 1851, der nur eine Art, nämlich O. celata kannte, ist auch hinsichtlich der Stellung unschlüssig. Er sagt auf Seite 134: „In natural position, it appears to lead from Scalpellum through Poecilasma to Lepas.“ JOLEAUD 1910 b leitet Oxynaspis phylogenetisch von Sc. scalpellum (vulgare) ab. Die hauptsächlichste Ähnlichkeit zwischen diesen Formen scheint in der Lage des Umbo auf dem Scutum zu bestehen. Da gegen liegt aber der Umbo der Carina verschieden, bei Scalpellum nähert er sich dem Apex, bei Oxynaspis der Basis. Eine Untersuchung der Platten der drei nunmehr bekannten Oxynaspis-Arten zeigt, daß sich das Scutum in beginnender Reduktion befindet, die bei O. BOCKI n. sp. am weitesten

\(^1\) Ich will nicht unterlassen, hier eine von Hj. BrocK 1920 veröffentlichte präliminäre Mitteilung über die Phylogenie der Cirripeden zu erwähnen, die mir während des Druckes meiner Arbeit zukam. Sie gründet sich auf eine Untersuchung der Plattentwicklung. Der genannte Verfasser findet, daß sich sämtliche Cirripeden aus Formen mit fünf Platten entwickelt hätten. Diese Entwicklung sei in zwei Linien vor sich gegangen, die eine umfasse die mit mehreren Platten versehenen Formen Archaeolepas, Lorica, Mitella (Pollicipes) und Scalpellum. Die andere enthalte jene Formen, die die fünf Platten beibehalten oder reduzierte Platten hätten. Ich bin überzeugt, daß diese zweite Linie nicht gerade, sondern verzweigt ist. Die mit fünf Platten versehene enthält mehrere Serien, was auch die Mundteile zeigen, die aber BrocK nicht erwähnt. Die von ihm vorgelegten Resultate scheinen, nach den kurzen Angaben zu urteilen, im großen und ganzen meinen hier mitgeteilten Ergebnissen nicht zu widersprechen.

gegangen ist. Bei *O. celata* liegt der Umbo der Carina zentral oder subzentral, womit eine Ähnlichkeit mit *Lepas fuscicularis* erhalten wird; bei *O. Bocki* ist der Umbo wie bei den übrigen *Lepas*-Arten und *Poecilasma* an der Basis.

Joleaud 1910 b leitet das Genus *Conchoderma* von *Scalpellum* (*vulgare*) ab. Dabei wurden aber nur äußere Teile wie die Lage des Umbo berücksichtigt. Wie oben hervorgehoben wurde, kann leicht eine Ver-

Facta nicht kommen. Man könnte höchstens sagen, daß *Heteralepas* eine unbedeutende Ähnlichkeit mit *Lepas* und *Alepas* (s. str.) zeige.

Wie das Verhältnis zwischen anderen reduzierten Formen wie *Anelasma*, *Microlepas*, *Chaetolepas* und *Koleolepas* ist, kann man, ohne daß man Material zur Verfügung hat, nicht zu entscheiden versuchen. Auch sind diese Formen so stark reduziert, daß es unmöglich ist, irgendwelche Übereinstimmungen mit anderen Formen zu finden.

Operculata.

1) **Annandale** 1909 a gibt für *Poecilasma* einen mehrgliedrigen Caudalanhang an. Sicherlich ist dies ein Druckfehler.
eingliedriger Caudalanhänge bei *Verruca* ergeben sich Übereinstimmungen mit Pedunculaten, wie auch mit einigen primitiven Operculaten, wie *Chthamalus* und *Catophragmus*. Die aus getrennten Ganglien zusammengesetzte Bauchganglienkette gleich der der Pedunculaten, das Endsaekchen der Maxillardrüse dagegen dem von *Balanus*. Die Naupliuslarven weisen Ähnlichkeiten sowohl mit Balaniden, als auch Pedunculaten auf. PILSBRYs Ausspruch über *Verruca*, 1916, Seite 14: „Although the *Verrucidae* are grouped as sessile barnacles the genus has no near relationship with the *Balanidae*“, scheint somit nicht vollkommen richtig; denn, wie wir gesehen haben, zeigt *Verruca* Übereinstimmungen mit einer Reihe primitiver Pedunculaten und auch Operculaten. *Verruca* repräsentiert wohl einen frühzeitig deutlich geschiedenen Stamm. PILSBRYs Vorschlag, zwischen *Verruca* und den übrigen Operculaten zu trennen, scheint mir, auch von jenem Gesichtspunkt gesehen, von dem ich ausging, berechtigt zu sein. Deshalb werden hier die beiden Unterordnungen *Verrucomorpha* und *Balanomorpha* aufgenommen.

Die von PILSBRY 1916 gemachte Einteilung stimmt mehr mit DARWINS überein; da sie in vielen Punkten mit den von mir für die Behandlung dieses Themas angewendeten Gesichtspunkten übereinstimmt, folge ich ihr in den hauptsächlichsten Teilen. Da aber PILSBRY den Wert der Mundteile scheinbar nicht hinreichend hervorhob, können hier Ergänzungen gegeben
werden. Deshalb dürfte eine nähere Besprechung der einzelnen Genera notwendig sein.

schon einmal gesagt, *Tetraclita* neben die mit vier Platten versehenen Genera, also von *Balanus* getrennt. Er sagt 1896 u. a. folgendes als Zusammenfassung: „Nous pensons que le genre *Tetraclita*, sans être fort éloigné du genre *Balanus*, ne doit pas cependant lui être assimilé et que ces deux genres ne sont pas aussi voisins que pouvait le penser Darwin, ignora nt qu'il était de la structure exacte des parois calcaire. Le genre *Tetraclita* par la structure en somme plus simple, au point de vue du développement de sa paroi calcaire et de sa base, forme une sorte de transition entre le genre *Balanus* et le genre *Chthamalus* se rapprochant peut-être plutôt de ce dernier que du premier, si l'on veut bien se rappeler la constitution simple de la paroi et de la base, telle que nous l'avons déjà décrite chez cet animal." Somit scheint alles dafür zu sprechen, das Genus *Tetraclita* von *Balanus*, *Acasta*, *Elminius*, *Creusia* und *Pyrgoma* zu trennen. Auf Grund einiger Ähnlichkeiten mit *Chthamalus* eine besondere Familie aufzustellen ist vielleicht nicht angezeigt, da sich die größten Übereinstimmungen, auch wenn man andere Charaktere berücksichtigt, doch mit *Balanus* ergeben. *Tetraclita* als eine Unterfamilie unter *Balanidae* zu stellen ist sicherlich ebenso berechtigt wie die von Pilsbry 1916 durchgeführte Trennung des Genus *Chelonibia* von der *Balanus*-Serie.

Das mit sechs Platten versehene Genus *Chelonibia*, dessen Rostrum deutlich aus drei Teilen zusammengesetzt ist, was zeigt, daß Verschmelzungen von Platten vorkommen können, besitzt Mundteile, die sowohl jenen von *Coronulidae*, als auch jenen von *Balaninae* gleichen. Doch haben wir es in keinem Fall mit einer vollständigen Übereinstimmung zu tun. Darwins Ausspruch über diesen Genus, 1854, Seite 38: "This is a distinct and well-defined genus", ist vollkommen richtig. Auch Pilsbrys Unterfamilie *Chelonibiinae* nehme ich hier auf.

VIII. Kapitel: Artbeschreibungen.

Cirripedia.

Ordnung Thoracica.

Unterordnung Lepadomorpha PILSBRY, 1916.

Pedunculata früherer Verfasser.

Familie Scalpellidae PILSBRY, 1907.

Fam. Polyaspidae GRUVEL, 1902 b, 1905 a.
Unterfam. Scalpellinae PILSBRY, 1907 b.
Fam. Pollicipedidae ANNANDALE, 1909 a.

Diagnose: ANNANDALE, 1909 a, Seite 63.

Genus Pollicipes LEACH, 1817.

Pollicipes, LEACH, 1817.
Lepas LINNÉ, 1767.
Anatifia BRUGUÈRE, 1789.
Ramphidiona SCHUMACHER, 1817.
Polylepas DE BLAINVILLE, 1824.
Capitulum J. E. GRAY, 1825.
Vaucheria PALLARY, 1904.
Pollicipes DARWIN, 1854, WELTNER, 1897 a, GRUVEL, 1902 b, 1905 a, 1910, 1912 b
ANNANDALE, 1910 b.
Mitella OKEN, 1815, PILSBRY, 1907 b, 1911 c, KRÜGER, 1911 a. JOLEAUD (pars‘generis.)
1913 a, ANNANDALE, 1916 a.

Verbreitung: Die Littoralregion der warmen und gemäßigten Meere.

1) Im Falle die Mundteile typisch waren, habe ich sie in die Diagnosen mit aufgenommen.

Pollicipes mitella (Linne, 1767.)
(Taf. III*, 7, 8.)

Lepas mitella Linne, 1767.
Polypleas mitella de Blainville, 1824.
Capitulum mitella J. E. Gray, 1825.
Pollicipes mitella G. B. Sowerby, 1833, Darwin, 1851, Weltner, 1897 a, Gravel, 1905 a, 1912 b, Annandale, 1910 b.
Mitella mitella Pilsbry, 1907 b, 1911 c, Krüger, 1911 a, Annandale, 1916 a.

Komplettierende Beschreibung: Diese Art ist schon vorher von Darwin 1851, Seite 316 und Krüger 1911 a, Seite 8, ausführlich beschrieben worden, weshalb hier nur kleinere Zusätze gemacht werden. Hinsichtlich der Segmentanzahl der Cirren, die in jüngeren Arbeiten Er-
wähnung findet, will ich hier abermals darauf hinweisen, daß es notwendig ist, das Maß der untersuchten Individuen anzugeben, da andernfalls diese Angaben geringeren Wert für die Systematik hätten. Die Anzahl der Segmente nimmt mit der Größe des Individuums zu, was aus der folgenden Tabelle hervorgehen dürfte. (Die arabischen Ziffern bezeichnen die Segmentanzahl der Cirren I—VI und des Caudalanhanges).

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 11 mm Breite 4,5 mm</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Länge 30 mm Breite 13 mm</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Länge 32 mm Breite 19 mm</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>—</td>
</tr>
</tbody>
</table>

Wie die Tabelle zeigt, besteht eine gewisse Variation. Im großen und ganzen haben aber die größeren Individuen mehr Segmente. Die von Krüger 1911 a beschriebenen und abgebildeten eigentümlichen Borsten auf Cirrus I und II wurden ziemlich zahlreich wiedergefunden. Diese am inneren Ramus sitzenden Borsten sind von zwei Typen, von denen der mit kräftigen Zähnen versehene (Krüger, Tafel II, Fig. 11 b) vorherrscht. Krüger hat Borsten gleichen Baues auch bei Pollicipes cornucopia Leach beobachtet; da ich solche auch bei Pollicipes polymerus Sowerby antraf, dürfte Krügers Vermutung, daß diese Borsten für die gesamte Gattung charakteristisch seien, Berechtigung haben. Krüger sagt darüber auf Seite 9: „Ich möchte diese Borsten für Sinneshaaräute halten, erstens wegen ihrer Stellung auf dem ersten und zweiten Cirrus in der Nähe des Mundkegels, dann aber auch wegen ihrer Ähnlichkeit mit Sinneshaaräuten bei dekapoden Krebsen.“ Diese Ansicht scheint mir wenig zutreffend zu sein, denn die mit einer dicken Cuticula versehenen Borsten sind sicherlich wenig geeignet, die Aufgabe von Sinnesborsten zu erfüllen; eher haben sie mit ihren wohlentwickelten Zähnen für das Ergreifen und Zerteilen der Beute Bedeutung.

Fundort: Japan, Sagami, Misaki Ebbstrand. 2—3 m tief. 24. 5. 1914, S. Bock. R. M.¹)

Neue Fundorte: On Noesa Kembangen, Südküste Javas, zwischen Steinern und in Rinnen. April 1899 C. W. Aurivillius R. M.
Wijnkoopsbai, Südküste Javas, C. W. Aurivillius 1891 U. M.
Südlicher Atl. Ozean 25. 2. 1884, Stelfe R. M.

Pollicipes polymerus G. B. Sowerby, 1833.

Pollicipes polymerus Sowerby, 1833.
Pollicipes Mortoni Conrad, 1837.
Pollicipes polymerus Darwin, 1851, Weltner, 1897 a, Gruvel, 1905 a.
Mitella polymerus Pilsbry, 1907 b, Hughes 1914.

Fundort: Kalifornien, San Pedro, 1-8 bis 27-4 m tief. 1894. Eisen U. M.

Genus *Scalpellum* Leach, 1817.

Scalpellum Leach, 1817.
Lepas Linné, 1767.
Pollicipes Lamarck, 1818.
Polylepas De Blainville, 1821.
Smilium (pars generis) Leach, 1825.
Calantica (pars generis) J. E. Gray, 1825.
Thaliella (pars generis) J. E. Gray, 1848.
Anatifa Quoi et Gaimard, 1826—34.
Xiphidium (pars generis) Dixon, 1850.

Scalpellum Darwin, 1851, Hoek 1883, 1907 a, 1909, Weltner 1897 a, Gruvel 1902 a, b, 1905 a, 1910, 1912 b, Pilsbry 1907 b, Annandale 1907 a, 1909 b, 1910 a, 1916 b, Jolaud 1914 a, Stebbing 1910.

Verbreitung: Alle Meere von ungefähr 30 m bis zu großer Tiefe.

Diese große Gattung, die an 200 bekannte Arten umfaßt, war Gegenstand vieler Gruppierungsversuche und wurde in letzter Zeit in mehrere Gattungen zerlegt. Viele Forscher haben ungefähr gleichzeitig Aufteilungen vorgenommen, was recht große Verwirrung anrichtete. Da unsere Kenntnisse hinsichtlich vieler Arten äußerst unvollständig ist, sich nur auf alte Beschreibungen stützt, scheint eine Aufteilung in neue Gattungen allzu voreilig.

Ehe wir uns über die gegenwärtig geeignetste Gruppierung aussprechen, dürfte ein kurzer geschichtlicher Überblick über die Systematik von Scalpellum angezeigt sein.

Der erste eigentliche Versuch einer Einteilung der Arten wurde von Hoek 1883 unternommen. Dieser Verfasser hebt hervor, daß die Gruppierung hauptsächlichst auf Grund äußerer Charaktere geschehe, weil er nicht Gelegenheit gehabt hätte, die inneren Teile der Exemplare zu untersuchen. Doch gelang es ihm, dabei einige Gruppen aufzustellen, die man später in den ausführlicheren Klassifizierungen von Grivel 1902 b und 1905 a wiederfinden kann, welch letztgenannter Verfasser sich überhaupt auf Hoek stützt. Zu großes Gewicht wird dabei aber auf die Form der Carina gelegt; bei einer Gruppe wird z. B. angegeben, daß die Carina in einem Winkel gebogen sei, dessen Spitze beim Umbo liege, der sich unter dem Apex befinde. Bei einer anderen Gruppe wieder ist die Carina regelmäßig gebogen, der Umbo beim Apex. Bei dieser mit regelmäßig gebogener Carina kann auch der Umbo ein wenig vom Apex entfernt sein. Ich finde die Form der Carina ziemlich wechselnd, was darauf beruht, ob man jüngere oder ältere Individuen zur Untersuchung heranzieht. Der Abstand zwischen Umbo und Apex variiert mit dem Alter, jüngere Individuen haben den Umbo oft näher beim Apex als ältere und die Platte wird regelmäßig gebogen. Es kann also in solchen Fällen recht schwer sein zu entscheiden, ob die Carina in einem Winkel oder regelmäßig gebogen ist.

Dieser Kritik antwortet Pilsbry 1911 a und führt Gruvels Gruppen auf seine Genera zurück. Ob dies aber auf Grund der kurzgefaßten Angaben Gruvels möglich ist, mag dahingestellt bleiben.

Um Vollständigkeit zu erreichen, muß hier auch ein mehr alleinstehender Versuch Erwähnung finden; es ist dies Joleauds Einteilung vom Jahre 1914 a. Da er scheinbar nur Rücksicht auf äußere Charaktere, wie die Lage des Umbos auf der Carina, dem *Scutum* u. a. Platten, das Vorkommen
oder Fehlen des Rostrums nahm, dagegen das Aussehen der Zwergmännchen nicht in Rechnung zicht, kann diese Gruppierung hier keine Anwendung finden. Wie schon gesagt, kann die Lage des Umbos etwas variieren; daher scheint es mir z. B. nicht angezeigt, zwischen einer Carina mit apiealem Umbo und einer solchen mit proapiealem zu unterscheiden.

1) Dieser Name ist schon vorher von Hoek 1907 a. gebräucht worden, was Joleaud nicht berücksichtigt.

Pilsbry's Einteilung kann somit nicht als für alle Arten voll zufriedenstellend angesehen werden. Doch erweist sie sich als für die hier repräsentierten hinreichend, weshalb ich also die Arten nach Pilsbry's Gruppierung einteile; seine Genera führe ich jedoch nur als Gruppen. Damit will ich aber nicht gesagt haben, daß sich diese Aufteilung als in allen Hinsichten geeignet erweist; ich will vorläufig nur provisorisch gruppiern, bis die Kenntnisse der hierhergehörenden Arten vollständiger geworden sein wird.

I. Gruppe Calantica Gray, 1825.

Diese Gruppe ist hier nicht vertreten.

II. Gruppe Smilium Gray, 1825.

Scalpellum acutum Hoek, 1883.

(Textfig. 23.)

Scalpellum acutum Hoek 1883, Weltner 1897 a, Gruvel 1905 a, 1912 a, Hoek, 1907 a, Annandale 1910 a, 1916 a.

Scalpellum longirostrum Gruvel, 1902 a, 1905 a.

Textfig. 23. **Scalpellum acutum**, Hoek.

a Labrum mit Palpus, Vergr. 168 mal.
b Palpus, Vergr. 168 mal.
c Mandibel, Vergr. 143 mal.
d I. Maxille, Vergr. 200 mal.
e II. Maxille, Vergr. 143 mal.
f 6. Cirrus mit Caudalanhang (co), Vergr. 38 mal.
g Das Tier von vorn, h von der Seite, i von hinten, Vergr. 4 7 mal.

Zool. Bidrag, Upsala, Bd. 7.

Komplettierende Beschreibung: Hoek 1907 a weist betreffs der beiden Arten *Sc. acutum* Hoek und *Sc. longirostrum* Gruvel darauf hin, daß diese zweifellos identisch seien. Verschiedenheiten hinsichtlich Streifung, Carina, Subcarina und Zwergmännchen werden von Hoek als un wesentlich angesehen. Gruvel stellt auch seine Art auf Grund eines Exemplares mit gewissem Zweifel auf. Annandale 1910 a erwähnt intermediäre Formen. Im vorliegenden Material fand ich sowohl jüngere als auch ältere Individuen, die die Charaktere beider hier zusammengeführten Arten aufwiesen. Eine ausführliche, komplettierende Beschreibung dürfte angezeigt sein1).

Scutum in Form eines Parallelogramms mit einem diagonalen Kiel aus dem spitzigen Apex. Zuwachslinien zum Kiel parallel zu Margo basalis und lateralis.

Tegum stark verlängert, dreieckig, mit leicht konvexem Margo occludens und dadurch nach hinten gebogenem Apex. Margo seutalis bildet mitten darauf einen stumpfen Winkel. Ein diagonaler Kiel vom Apex bis zur carinalen Ecke mit Zuwachslinien.

Supralaterale trapezförmig, mit Umbo beim Apex. Margo seutalis schwach konkav. Unterer Teil zu einer Spitze zwischen Seutum und Carinolaterale ausgezogen.

Rostrolaterale fehlt.

Infracarina dreieckig, kleiner als das Rostrum, mit Umbo beim Apex. Zuwachslinien parallel zur Basis. Nach Hoek und Gruvel wird

1) Meine Terminologie der Platten stimmt in der Hauptsache mit Hoeks, 1883. Seite 61, Fig. 1 und 2 geliefeter überein.
die Platte Rostrolaterale genannt, doch scheint sie mir, wegen ihrer dreieckigen Form und ihrer Lage dem Infralaterale, zu entsprechen.

Carinolaterale vierseitig, mit Umbo beim Apex. Vom Apex aus ein diagonaler Kiel. Zuwachslinien deutlich.

Subcarina dreieckig, mit Umbo beim Apex. Bei kleineren Individuen fand sie von gleicher Höhe wie das Rostrum.

Pedunculus schmal, nach oben zu etwas weiter. Länge $\frac{1}{3} - \frac{1}{2}$ der Länge des Capitulums, dicht bedeckt mit kleinen, am Oberrand abgerundeten Schuppen, die gewöhnlich regelmäßig angeordnet sind.

Größe zweier Individuen in Millimetern.

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>4</td>
<td>3</td>
<td>1.7</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mundteile: vorher nur wenig beschrieben, weshalb hier eine ausführlichere Beschreibung gegeben werden soll.

Labrum mit einem stumpfen, etwas vorspringenden Teil, der ver einzelte Haare trägt. Im ausgehöhlten Teil kleine, in Gruppen stehende Zähne, die in mehreren Reihen angeordnet sind.

Palpus verschmälert sich gegen das Ende, trägt entlang dem Oberrande und an der Spitze zerstreute Borsten.

I. *Maxille* mit deutlichem Einschnitt ein wenig ober der Mitte. Im dorsalen Teil des Einschnittes kleine Stacheln. Untere Ecke spitzig mit kleinen, dicht sitzenden Stacheln.

II. *Maxille* mit schwach konkaven Vorderrand, spärlich mit Borsten besetzt. Oberrand mit längeren und dichter sitzenden Borsten, die Seiten tragen vereinzelt Borsten.

Segmentanzahl der Cirren.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 10.5 mm</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Länge 4.5 mm</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

Cirrus I relativ lang, besonders bei ausgewachsenen Individuen. Rami von verschiedener Länge, aber beide schmal. Die übrigen Cirren lang, mit vier bis fünf Paaren langer Borsten im Vorderrand der Segmente.
Caudalanhang eingliedrig, von halber Länge des proximalen Segmentes des Protopoditen. An der Spitze und an der Seite einige Borsten.

Zwergmännchen wurde angetroffen, war jedoch schlecht konserviert, weshalb es nicht beschrieben wird.

Neue Fundorte: Japan, Sagami, Misaki, 225 m Tiefe, 6./5. 1914. S. Bock. RM.

Verbreitung. Tiefere Teile des Indischen, Atlantischen und Stillen Ozeans.

Scalpellum scorpio C. W. AURIVILLIUS, 1894.

Scalpellum scorpio C. W. AURIVILLIUS, 1894 b, WELTNER 1897 a, GRUVEL, 1905 a.

Diagnose und Beschreibung: C. W. AURIVILLIUS, 1894 b, Seite 46.

Neuer Fundort: Formosa-Straße, N. Lat. 20° 20', W. Long. 121° 30' UM.

III. Gruppe *Euscalpellum* HOEK, 1883.

Diese Gruppe war in der Sammlung nicht vertreten.

IV. Gruppe *Scalpellum* LEACH, 1817.

Die von PILSBRY 1908 gemachte Einteilung dieser Gruppe in *Scalpellum s. str.* und *Arcoscalpellum* HOEK ist scheinbar noch ziemlich unsicher. Der Unterschied soll hauptsächlichst in den verschiedenen entwickelten Infralateralia bestehen.
a) Infralaterale groß, pentagonal (oder mit abgerundeten Ecken), entlang des ganzen Teiles, breit. Umbo variierend submedian bis basal oder an der rostralen Seite, nie apical: *Scalpellum* s. str.

b) Infralaterale gewöhnlich kleiner als die übrigen Lateralia, dreieckig, sanduhrförmig oder unregelmäßig: *Arcoscalpellum* Hoek.

Scalpellum Stearnsii Pilsbry, 1890.

Scalpellum magnum Darwin, 1851.
Scalpellum calcariferum Fischer, 1891.
Scalpellum Stearnsii Pilsbry, 1890, Weltner 1897 a, Geuvel 1905 a, Pilsbry 1907 b 1911 c, Krüger, 1911 a, Annandale, 1916 b.

Scalpellum Stearnsii var. robusta Hoek, 1907 a.

Komplettierende Beschreibung: Ausführlich beschrieben von Pilsbry 1890, Seite 441, 1907 b, Seite 14 und 1911 c Seite 61, dann von Hoek 1907 a, Seite 69 und Krüger 1911 a, Seite 18, weshalb hier nur einige Zusätze gemacht werden können.

Capitulum ist von einer mehr oder weniger haarigen Chitincuticula bedeckt. Die Platten waren bei älteren und größeren Exemplaren durch

Wie Pilsbry 1911 c, fand auch ich bei einem jungen, 6 mm langen Individuum das Carinolaterale wenig hervortretend, was an das Verhältnis der nahestehenden Art Scalpellum scalpellum L. erinnert. Bei diesem kleinen Exemplar waren die Platten wenig voneinander getrennt.

Die Länge des Pedunculus wechselte bei den untersuchten Exemplaren von $\frac{1}{5}$ bei kleinen bis $\frac{3}{5}$ der Totallänge bei größeren. Sowohl Hoek als auch Pilsbry und Krüger erwähnen große Variationen hinsichtlich der Länge des Pedunculus. Schuppen in Ringen angeordnet, zwischen denen sich tiefe Falten befinden. Dadurch, daß diese ausgezogen werden, kann die Länge des Pedunculus zunehmen.

Größe der untersuchten Exemplare in Millimetern.

<table>
<thead>
<tr>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2·2</td>
<td>1</td>
<td>0·7</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>12</td>
<td>4·5</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>60</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>22</td>
<td>43</td>
<td>12</td>
</tr>
</tbody>
</table>

Zwergmännchen wurde auf einem der großen Exemplare angetroffen, ist bei Hoek 1907 a beschrieben und abgebildet.

Fundorte: Japan, Sagami, Misaki, Okinose. Tiefe 200—300 m. 11./6. 1914; 300 m, 26./6. 1914; 300 m, 8./7. 1914. S. Bock. An Molluskenschalen befestigt. R. M. 600 m, 28./6. 1914. S. Bock U. M. Japan, Kiuschiu, Sato-nomisaki, 225 m, 13./5. 1914 auf Pleisticantha oryg., S. Bock R. M.

Verbreitung: Japan, Malayischer Archipel.

Diskussion: Auf Grund des mir vorliegenden Materials kam auch ich zu der schon von Pilsbry 1911 c und Krüger 1911 a ausgesprochenen Auffassung, daß Hoeks 1907 a aufgestellte Varietät robusta mit der Haupt-
form identisch sei. Als diese Varietät auszeichnend wird angegeben, daß sie von plumper Form sei, breiteres Capitulum mit Chitinecuticula besonders stark zwischen Capitulum und Pedunculus, breiteres Infralaterale, Supralaterale und Tergum, und längeren Pedunculus mit in stark herausstehenden Ringen sitzenden Schuppen habe.

Die hier untersuchten, sämtlich aus Japan stammenden Exemplare waren Individuen verschiedener Größe. Wie schon oben hervorgehoben wurde, war die Länge des Pedunculus verschieden; bei den größeren, älteren Tieren war er gewöhnlich lang ausgebildet. Außerdem dürfte sich der Pedunculus nicht unwesentlich verlängern und verkürzen lassen. Das gleiche, wenn auch weniger entwickelt, kann bei der nahestehenden Art *Sc. scalpellum* L. beobachtet werden. Was das Merkmal: breiteres Capitulum und damit zusammenhängend. breitere Plätten betrifft, so beschreiben sowohl PILSBRY als auch KRÜGER japanische Formen, bei welchen die Länge des Capitulums $1^{1/3}$ seiner Breite mißt, was für die Varietät charakteristisch sein soll. Die Länge des Capitulums der Hauptform ist nach HOEK $1^{1/2}$ mal der Breite; dieses Merkmal scheint somit wenig haltbar. Die Varietät *robusta* des malaysischen Archipels kann ich nicht als von der Hauptform deutlich unterschieden finden.

Scalpellum scalpellum (LINNÉ, 1767).

Lepas scalpellum LINNÉ, 1767.
Scalpellum vulgaris LEACH, 1824, DARWIN, 1851 u. a. Verfasser.
Scalpellum scalpellum PILSBRY 1907 b.

Beschreibung schon vorher ausführlich von DARWIN 1851, Seite 222 geliefert.

Komplettierende Beschreibung: Angaben über die Segmentanzahl der Cirren haben hier wenig Wert, da diese Art in mehreren Charakteren deutlich unterschieden und wohlgekannt ist. Doch wählte ich diese Art wegen der Reichhaltigkeit des mir zur Verfügung stehenden Materials, um zu zeigen, daß die Segmentanzahl der Cirren und die Größe der Individuen miteinander zusammenhängen, was aus der folgenden Tabelle hervorgeht.
Größe des Individuums	I	II	III	IV	V	VI
Länge 31 mm | 8 | 11 | 19 | — | 20 | 21 | 23 | 23 | 24 | 25 | 24 | —
" 30 " | 8 | 10 | 18 | 20 | 19 | 20 | 19 | 20 | 21 | 23 | 23 | —
" 18 " | 7 | 9 | 14 | 15 | 15 | 15 | 17 | 17 | 18 | 17 | 18 | —
" 18 " | 7 | 9 | 15 | 15 | 17 | 18 | 17 | 18 | 18 | 19 | 20 | —
" 11 " | 6 | 8 | 13 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 17
" 6 " | 7 | 9 | 12 | 13 | 14 | 15 | — | 16 | 15 | 16 | 16 | 17

Wie hieraus ersichtlich, nimmt die Anzahl der Segmente mit der Größe des Individuums zu. Bei den kürzeren Cirrus wie Cirrus I ist der Unterschied nicht so groß wie bei den längeren, deren Segmentanzahl, z. B. an Cirrus VI, bei einem 6 mm und einem 31 mm langen Individuum 16 bzw. 24 beträgt. Im übrigen findet man individuelle Variationen zwischen den Rami gleich großer Exemplare, ja selbst bei ein und demselben Individuum: Sicherlich erhielt man verläßlichere Werte, wenn man, um die Segmentanzahl z. B. 18 mm großer Tiere zu bestimmen, die mittlere Zahl der Segmente vieler Exemplare gleicher Größe nähme. Auch wenn man dazu keine Gelegenheit hat, so besitzen diese Angaben über die Segmentanzahl verglichen mit der Größe des Tieres ohne Zweifel als eine gewisse Kontrolle systematischen Wert.

Verbreitung: Atlantischer Ozean, Mittelmeer.

Fundorte: Bohuslän, Gullmarfjord, Väderöarna, Tiefe 50—100 m, Juli 1918 C. A. NILSSON-CANTELL.

Neuer Fundort: Sori, Mittelmeer, auf Röhren von Sabella, 72—90 m, Oktober 1887 Hj. THEEL U. M.

Scalpellum gibberum C. W. AURIVILLIUS, 1894.

(Textfig. 24. 25.)

Scalpellum gibberum C. W. AURIVILLIUS, 1894 b. WELTNER, 1897 a, 1898. GRUVEL 1905 a.

Scalpellum calcareum C. W. AURIVILLIUS, 1894 b. WELTNER, 1897 a, GRUVEL 1905 a.

Scalpellum patagonicum GRUVEL, 1902 b, 1905 a. PILSBY, 1907 b.

auch das hauptsächlichste Verbreitungsgebiet der Art zu sein,¹) weshalb ich den Art Namen *gibberum* beibehalte.

Eine vollständige Beschreibung soll geliefert werden, um die Zusammenziehung zu motivieren.

Supralaterale bei ausgewachsenen Individuen parallelogrammförmig, transversal verlängert, mit abgerundeten Ecken. Umbo vom Apex entfernt, mit zu den Ecken verlaufenden Kielen. Bei jüngeren Tieren nicht so stark verlängert.

Rostrum mehr oder weniger von Chitin, bei jungen Individuen von den Rostrolateralia bedeckt. Quadratisch, mit abgerundeten Ecken, der mitten darauf befindliche Umbo macht den sichtbaren Teil aus. Der als zwischen *Sc. calcaratum* und *gibberum* bestehend angegebene Unterschied (auf dem wahrnehmbaren Teil desselben gegründet) scheint mir allzu un-

¹) Für *Sc. calcaratum* wird der Stille Ozean als Fundort angegeben, doch sind die Angaben nach Aurivillius unsicher.
wesentlich, da man doch hauptsächlichst die eigentliche Form der ganzen Platte ins Auge fassen muß.

<table>
<thead>
<tr>
<th>Größe in Millimetern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulums</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Mundteile:

Palpus konisch, mit Borsten an der Spitze und entlang einer Kante.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 20 mm</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Länge 6 mm</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Die längeren Cirren mit drei Paar Borsten am Vorderrand der Segmente, wie es Aukivillius angibt.

Caudalanhang konisch, eingliedrig, bei ausgewachsenen Tieren von der Länge des Protopoditen, bei jüngeren Individuen kleiner, ungefähr halb so lang wie der Protopodit. Borsten an der Spitze und an den Seiten, wie es Aukivillius angibt.

Penis fehlt.

Anhänge: Vom vorderen, unteren Teil des Thorax, ungefähr dort, wo der Körper befestigt ist, entspringt aus jeder Seite ein fadenförmiger Anhang (Textfig. 25 g—i). Etwas Gleichartiges fand Annandale 1906 a bei Sc. squamuliferum Weltner. Aus Annandales Fig. 4, Pl. II 1907 e geht hervor, daß diese „ovigerous lamellae“ ihrer Lage nach von mir bei Sc. gibberum gefundenen entsprechen; sicherlich haben wir es hier mit homologen Bildungen zu tun. Weiters sind mit diesen vermutlich die für Cryptophialus beschilderten Anhänge homolog; ich bezeichnete sie daher nicht als Filamentanhänge, sondern betrachtete sie als entsprechend den von gleicher Stelle ausgehenden „frena ovigera“ bei den Pedunculaten. Diese Anhänge, die sich schief nach hinten erstrecken, haben wohl für die Larven in der Mantelhöhle Bedeutung; ob sie aber, wie es Darwins Ansicht ist, zum Festhalten der Larven dienen, oder durch Bewegungen das Respirationswasser in der Mantelhöhle erneuern, was Berndt 1906 für Cryptophialus annimmt, ist schwer zu entscheiden, wenn man nicht lebendes Material zur Verfügung hat. Die Anhänge bei Sc. gibberum hatten an 22 mm langen Exemplaren eine Länge von 9 mm und erstreckten sich entlang des dorsal en unteren Teiles des Körpers nach hinten. Bei jüngeren Individuen waren sie kürzer. Ihre Oberfläche ist mit Kammzähnen be- setzt (s. Textfig. 25 h, i). Diese Anhänge werden von Aukivillius weder für Sc. gibberum, noch für Sc. calcaratum erwähnt; doch ergab eine Kontrolluntersuchung des Typenmaterials, daß sie sich auch dort vorfinden. Also eine weitere Stütze für die Zusammenziehung der beiden Arten.

Zwergmännchen: Auf der Innenseite des Sentums, beim Umbo, wurden ein bis zwei Zwergmännchen angetroffen, die das auf Textfig. 25 f abgebildete Aussehen hatten. Länge (Antennen und Borsten nicht mitgerechnet): 1.17 mm. Diese Zwergmännchen zeigten eine ziemlich weitgehende Reduktion. Stimmtten mit keinem der vorher beschriebenen überein, weshalb eine ausführliche Behandlung vorgenommen werden soll. Die eine Langseite des Zwergmännchens schwach konkav, die andere stark konvex, die
Textfig. 25. Scalpellum gibberum, Auriv.

a Palpus, Vergr. 81 mal. b Mandibel, Vergr. 81 mal. c I. Maxille, Vergr. 143 mal. d II. Maxille, Vergr. 55 mal. e 6. Cirrus mit Caudalanhang (ca) f Zwergmännchen, Vergr. 45 mal. g Anhang, Vergr. 8 mal.

h Teil von denselben, Vergr. 85 mal. i die Spitze, Vergr. 257 mal.

In der Mantelhöhle der weiblichen Exemplare wurden Metanauplius- und Cyprisstadien angetroffen (s. das Kapitel über die Larven).

Verbreitung. Stiller Ozean, Atlantischer Ozean südlich von La Plata, 100 m tief, Patagonien, Magalhaens-Straße, 18 bis 93,6 m tief.

Verwandtschaft: Diese Art steht, wie sowohl Gruvel als auch Aurivillius angeben, Sc. scalpellum L. sehr nahe.

Scalpellum Rathbunae Pilshry, 1907.

(Textfig. 26.)

Scalpellum Rathbunae Pilshry, 1907 b.

Textfig. 26. Scalpellum Rathbunae, PILSBRY.

Größe von drei Individuen in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitolums</th>
<th>Breite des Capitolums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>45</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Die inneren Teile wurden bisher noch nicht beschrieben.

Mundteile: Labrum hat bei jüngeren Individuen die gewöhnliche spitzige Form, bei älteren Tieren ist der vordere Teil zu einer scheinbarförmigen Partie erweitert. Die Zähne des Labrums sind kleine, quergestellte Schuppen, deren Ränder zahnartig geteilt sind.

Palpus konisch, mit längeren Borsten an der Spitze, weniger und kürzeren an der Oberseite.

I. Maxille in der Regel mit deutlichem Einschnitt im oberen Teil, ohne Borsten. Stacheln oberrand und unterhalb des Einschnittes, nach unten zu an Größe abnehmend.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 mm</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Länge des Pedunculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mm</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Länge des Capitulums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 mm</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Länge des Pedunculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caudalanhänge: konisch, klein, mit zerstrennten kürzeren Borsten entlang der Seiten und Ränder. Ungegliedert.

Penis fehlt.

Zwergmännchen bei den untersuchten Exemplaren nicht angetroffen.

Alter Fundort: Ostküste von Patagonien, S. Lat. 42° 24', W. Long. 38° 30'. Tiefe 77-4 m.

Scalpellum formosum Hoek 1907.

Scalpellum formosum Hoek 1907 a.

Komplettierende Beschreibung: Diese Art wurde hinsichtlich ihrer äußeren Teile vorher von Hoek 1907 a, Seite 110 beschrieben. Da jedoch diese Beschreibung unvollständig ist und die Art eine Reihe Übereinstim-
mungen mit mehreren neuen Arten aufweist, soll sie ausführlicher behandelt werden.

Tergum durch seinen spitzigen Apex ausgezeichnet, dreiseitig, mit geradem Margo oculudens und carinalis. Aus dem Apex gehen radiäre Streifen aus.

Supralaterale trapezförmig, mit beinahe geraden Seiten, mit einem diagonalen Kiel aus dem Apex und radiären Streifen.

Rostrum des untersuchten Exemplares langgestreckt, nach oben zu am breitesten, unbedeutend von den Lateralia bedeckt.

Rostrolaterale viersieitig. Länge der Platte größer als Höhe. Die Basis viel kürzer als der Margo seutalis, wie auch der Margo rostralis kleiner als der Margo lateralis ist. Ein diagonaler Querkiel; in der oberen rostralen Ecke, gleichwie aus dem Umbo radiäre Streifen.

Infralaterale dreieckig, versehnäler sich gegen den Apex zu, reicht nicht bis zur basiseutalen Ecke des Supralaterale.

Pedunculus ziemlich kurz, zylindrisch, haarig, mit transversal etwas ausgezogenen Schuppen. Chitinzwischenraum vorhanden. Oberrand der Schuppen konvex.

Größe: Länge des Capitulums 6 mm, Breite 3 mm. Länge des Pedunculus 2 mm, Breite 15 mm.

Mundteile bisher noch nicht beschrieben.

Palpus konisch, von gewöhnlichem Ausschen.

Textfig. 27. Scalpellum formosum, Hoek.

I. Maxille mit deutlichem Einschnitt mitten darauf. Ober diesem borstenlosen Einschnitt hat das vorliegende Exemplar 4, darunter 7 Stacheln.
II. Maxille mit beinahe geradem Oberrand, mit Borsten. Im hinteren Teil an der Seite längere Borsten. Maxillarlobus deutlich abgesetzt.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge in mm</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Cirrus I kurz, mit relativ kleiner Differenz zwischen der Länge der Rami. Übrige Cirren lang, mit 4 Paar Borsten am Vorderrand.
Caudalanhang eingliedrig, klein, etwas keulenförmig, indem er nach unten schmäler wird. Im oberen Teil einige Borsten.
Penis fehlt.
Alte Fundorte: S. Lat. 4° 50-5', Ö. Long. 127° 59', 2081 m tief. S. Lat. 4° 24-3', Ö. Long. 129° 49-3', 1570 m tief.
 Neuer Fundort: Japan, Misaki, Okinose, 600 m tief. 30.6. 1914. S. Bock, R. M.

Diskussion: Diese Art wie auch mehrere nahestehende Arten bisher unvollständig beschrieben, weshalb es schwer ist, Vergleiche anzustellen. Nahverwandte Arten sind: Sc. vitreum HÖK, 1883, Sc. formosum PILSBRY, 1907 b (neuer Name Sc. bellum, 1908), samt Sc. pacificum PILSBRY, 1907 d.

Scalpellum uniarticulatum n. sp.
(Textfig. 28.)
Textfig. 28. *Scalpellum uniarticulatum* n. sp.

- a Labrum mit Palpus, Vergr. 37.8 mal.
- b Mandibel, Vergr. 57 mal.
- c Mandibel, Vergr. 57 mal.
- d I. Maxille, Vergr. 128 mal.
- e II. Maxille, Vergr. 57 mal.
- f 6. Cirrus mit Caudalanhang (ce), Vergr. 42 mal.
- g Rostrum, Vergr. 21 mal.
- h Das Tier von vorn.
- i von der Seite.
- j von hinten, Vergr. 2.9 mal.

Infralaterale dreieckig; mit einer Basis, die gewöhnlich kürzer als die Seiten ist. Umbo beim etwas nach vorn gebogenen Apex.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4-5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3-5</td>
</tr>
<tr>
<td>4-5</td>
<td>2</td>
<td>1-75</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Mundteile: Labrum in eine Spitze ausgezogen, eingebuchtet, ohne Einschnitt. Trägt dicht sitzende, kleine, spitzige Zähne.

Palpus konisch, mit relativ zahlreichen Borsten.

I. Maxille ohne Einschnitt, aber mit schwach gebogenem Vorderrand. Kleinere Stacheln im mittelsten Teil.

II. Maxille mit einem kleinen Einschnitt mitten auf dem Vorderrand, der die Borsten trennt. Ein hinterer, borstentragender Lobus abgesetzt. Maxillarlobus klein, konisch.

Segmentanzahl der Cirren von drei Exemplaren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 14 mm</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Länge 13 mm</td>
<td>7</td>
<td>8</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Länge 6-25 mm</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Cirrus I kurz mit Rami von etwas verschiedener Länge (Unterschied ungefähr zwei Segmentlängen), übrige Cirren lang. Die Segmentanzahl variiert ungefähr zwischen 15 bis 17.

Caudalanhang war bei allen von mir untersuchten Exemplaren kürzer als der Protopodit. Seiner Form nach konisch, an der Spitze einige Borsten, kleinere verstreut an den Seiten. Die nahestehende Art Sc. rubrum hat lange, aus 17 Segmenten zusammengesetzte Caudalanhänge. Wie schon oben gesagt wurde, bieten die Caudalanhänge gute Merkmale für die Artbestimmung.
Penis vorhanden, lang, geringelt, mit zerstreuten Borsten.

Zwergmännchen wurde nicht angetroffen.

Fundorte: Japan, Sagami, Misaki, Okinose, 600 m tief. 30. 6. 1914. S. Bock, R. M. U. M.

Japan, Sagami, Yokuskasund, 135 und 162 m tief. 19. 6. 1914. S. Bock, R. M.

Diskussion: Diese neue Art zeigt wenigstens in ihrem Äußeren mehrere Übereinstimmungen mit Se. rubrum Hoek, 1883 und der nahestehenden Se. diota Hoek, 1907 a. Von Se. diota wurde nur eine auf ein Exemplar gegründete, unvollständige Beschreibung geliefert, die nur die äußeren Teile berücksichtigt. Die Art scheint Se. rubrum ziemlich nahe zu stehen. Da aber die inneren Teile nicht gekannt sind, ist es schwer, einen Vergleich der hier beschriebenen Art mit Se. diota durchzuführen.

Der hauptsächlichste Unterschied zwischen der hier aufgestellten Art und Se. rubrum (welche Form ausführlicher von PILSBRY 1911 e beschrieben wurde) zeigt sich in der Ausbildung des Caudalanhanges, der hier kurz und eingliedrig ist. Außerdem findet man eine Reihe kleinerer Verschiedenheiten hinsichtlich der Mundteile und der äußeren Teile. Diese vielleicht unbedeutender scheinende Abweichung sehe ich als für die Unterscheidung dieser Individuen als eine neue Art vollständig hinreichend an.

Ich fand nämlich bei allen Exemplaren eingliedrige konische Caudalanhänge, was darauf deutet, daß dies keine Zufälligkeit vorstellt. Eine so große Variation wie zwischen kurzen, eingliedrigen und langen, aus 17 Gliedern zusammengesetzten, kann kaum innerhalb derselben Form stattfinden.

Scalpellum convexum n. sp.

(Textfig. 20.)

Beschreibung: Capitulum mit 14 Platten, von einer dünnen, unbehaarten Chitin cuticula bedeckt. Platten deutlich weit von Chitin-Zwischen-
Textfig. 29. **Scalpellum convexum** n. sp.

a: Mandibel, Vergr. 128 mal.
b: Mandibel, Vergr. 275 mal.
c: I. Maxille, Vergr. 180 mal.
d: II. Maxille, Vergr. 128 mal.
e: Cirrus mit Caudalauhang (ca), Vergr. 29 mal.
f: Zwergmännchen, Vergr. 69 mal.
g: Das Tier von vorn,
h: von der Seite,
i: von hinten, Vergr. 6 mal.

Suprалaterale pentagonal, mit ein wenig unter dem Apex gelegenen Umbo. Aus dem Umbo gehen mehr oder minder deutliche Kiele aus, von denen die äußeren am deutlichsten sind.

Rostrum länglich, viereitig, mit Umbo beim Apex.

Pedunculus variiert in seiner Länge zwischen $1/2$ bis 1 mal der Länge des Capitulums. Form zylindrisch, ins Capitulum übergehend. Schuppen schmal, transversal ausgezogen, von einander durch größere Chitinzwischenräume getrennt, in alternierenden Ringen sitzend.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3,5</td>
<td>3,5</td>
<td>17</td>
</tr>
<tr>
<td>2,5</td>
<td>1,5</td>
<td>1</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Mandibel mit drei Zähnen und einer pektinierten unteren Ecke, die in kleine, zweispitzige Zähne geteilt ist.
I. Maxille mit mehr oder weniger undeutlichem Einschnitt auf der Mitte. Stacheln relativ groß. Schwach markierte untere Ecke.

Segmentanzahl der Cirren bei zwei Individuen:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 10.5 mm</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Länge 13 mm</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>

Cirrus I mit kurzen, ungleich langen Rami. Übrige Cirren lang, mit 3 bis 4 Paar Borsten am Vorderrand.

Caudalanhänge klein, eingliedrig, kürzer als das proximale Segment des Protopoditen. Einige längere Borsten sitzen längs des Randes, nicht an der Spitze, sondern ein Stück unterhalb.

Penis fehlt.

Cyprislarven: In der Mantelhöhle der untersuchten Exemplare wurden entwickelte Cyprislarven angetroffen (s. Kapitel über Larven).

Diskussion: Diese hier beschriebene neue Art steht *Sc. carinatum* Ilg, 1883 am nächsten. Da von dieser aber nur die äußeren Teile bekannt sind, kann kein Vergleich gezogen werden. Hinsichtlich der Platten bestehen Verschiedenheiten in der Form von Scutum, Carina, Supra- und Infra laterale. *Sc. convexum* zeigt auch eine Reihe Übereinstimmungen mit *Sc. scalpellum*, ist jedoch von letzteren anerkannter Art deutlich durch das Fehlen
einer behaarten Cuticula und Verschiedenheiten des Scutums, des Infra-
laterale, der Schuppen des Peduneclus, der Mundteile, des Zwergmännchens
und anderer Merkmale getrennt.

Sc. convexum scheint sich in geringerer Tiefe aufzuhalten als *Sc. cari-
natum*, welche Art in 1829 m Tiefe gefunden wurde.

Scalpellum compactum Borradaile 1916.
(Textfig. 30.)

Scalpellum compactum Borradaile 1916.

Diagnose: Weibchen. Capitulum mit 14 Platten, Zuwachslinien un-
Scutum vierseitig, mit geraden Seiten, Umbo beim Apex. Tergum dreiseitig,
mit etwas konvexem Margo ocellifem. Carina schwach in einem Winkel
gebogen, mit vom Apex entferntem Umbo, Dorsalseite konvex ohne Seiten-
leisten, nach unten zu spitzig. Supralaterale pentagonal, mit Umbo ein
wenig unter dem Apex. Rostrum schmal, unbedeckt. Die Höhe des vier-
seitigen Rostrolaterale gleich der Breite. Infra-laterale schmal, dreiseitig,
mit frei vorspringender Spitze, flügelförmig nach außen gebogen. Carino-
laterale pentagonal, mit Margo carinalis, der durch den Umbo in eine obere
kleinere, konkave und eine untere konvexe Partie geteilt wird. Pedunculus
ungefähr von halber Länge des Capitulums, mit relativ spärlich sitzenden
Schuppen. Labrum ohne Zähne, Mandibel mit drei Zähnen und einer
schwach pektinierten unteren Ecke, die weniger vorspringt. I. Maxille mit
undeutlich abgesetzter unterer Ecke. II. Maxille mit schwach konkavem
Vorderrand, hinterer Lobus nicht abgesetzt, kleiner Maxillarlobus. Caudal-
anhang konisch, eingliedrig, mit kleinen Borsten. Zwergmännchen sackartig,
ohne Platten und Cirren.

Beschreibung: Die von Borradaile 1916 gelieferte ist auf Grund
eines jungen Individuums gemacht und unvollständig.

Komplettierende Beschreibung: Capitulum bei geschlechtsreifen Tieren
im unteren Teil angeschwollen. Platten weiß, mit sehr undeutlichen Zu-
wachslinien, von einer dünnen, glatten Cuticula bedeckt. Die Platten der
unteren Reihe wohl entwickelt.

Scutum deutlich vierseitig; mit geradem Margo ocellifem. Umbo beim
Apex. Ein schwach markierter Diagonalkiel vorhanden. Übrige Seiten bei-
nahe gerade.

Tergum dreiseitig, mit etwas konvexem Margo ocellifem. Margo cari-
nalis nach unten zu konvex, nach oben zu etwas konkav.

Carina von typischem Aussehen, schwach in einem Winkel gebogen.
Umbo ein Stück vom Apex entfernt. Die Länge bedeutend größer als die
des halben Capitulums. Seitenteile am besten um den Umbo entwickelt.
Dorsalseite konvex, ohne Spur von Seitenleisten, zwischen den Carino-
lateralia mit einer Spitze abschließend.
Textfig. 30. Sculpellum compactum Borradaile.

a Palpus, Vergr. 142 mal. b Mandibel, Vergr. 142 mal. c I. Maxille, Vergr. 142 mal. d II. Maxille, Vergr. 142 mal. e Zwergmännchen, Vergr. 86 mal. f Das Tier von vorn, g von der Seite, h von hinten, Vergr. 54 mal. i 6 Cirrus mit Caudalanhang (co), Vergr. 25 mal.

Rostrum schmal, nicht bedeckt von den Lateralia, mit dem Umbo beim etwas schmäleren oberen Teil.

Rostrolaterale trapezförmig, mit geraden Seiten. Margo seutalis am längsten. Höhe ungefähr gleich der Breite, Umbo bei der rostrosen
talen Ecke.

Infraflaterale schmal, von charakteristischer Form. Umbo beim oft stark ausgezogenen und nach außen gebogenen Apex.

Carinolaterale pentagonal, mit kurzem Margo basalis. Margo lateralis und superior von gleicher Länge, gerade. Margo carinalis durch den etwas vorspringenden Umbo in eine obere, ausgehöhnte und eine untere, etwas konvexe Partie geteilt.

Pedunculus relativ zylindrisch, etwas weiter im oberen Teil, von halber Länge des Capitulums. Schuppen ziemlich breit, transversal verlängert, regelmäßig sitzend, dichter im oberen Teil, doch deutlich durch Chitin voneinander getrennt.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>3:5</td>
<td>2:3</td>
</tr>
<tr>
<td>4</td>
<td>2:5</td>
<td>1:5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mundteile: **Labrum** mit einem vorspringenden Teil. Zähne fehlen.

Palpus konisch.

Mandibel mit drei Zähnen und einer etwas pektinierten unteren Ecke, weniger vorspringend.

I. Maxille ohne deutlichem Einschnitt, die abgerundete untere Ecke geht in den Unterrand über.

II. Maxille mit schwach konkavem Vorderrand, ohne Einschnitt. Hinterer Lobus nicht abgesetzt. Maxillarlobus in Form einer schwach konischen Erhebung.

Segmentanzahl der Cirren von zwei Individuen:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 8 mm</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Länge 12 mm</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

Larven: Im Capitulum großer, angeschwollener Individuen wurden zahlreiche Metanauplius- und Cyprislarven angetroffen.

Alter Fundort: Westlicher Eingang zum Mc. Murdosund, Antarctis, 75 m tief.

Neue Fundorte: S. Lat. 64°20', W. Long. 56°38'. Grahams Region südöstlich der Semourinsel, Antarctis. 150 m tief. Auf Polychaetenröhren. 16./1. 1902. Schwed. Südpolexpedition 1901—1903. R. M.

S. Lat. 64°36', W. Long. 57°42'. Grahams Region südwestlich der Snow Hill-Insel. 125 m tief. 20./1. 1902. Schwed. Südpolexpedition 1901—1903. R. M.

liegende Art in Scutum, Carinolaterale, Carina und den Schuppen des Pedunculus abweichend.

Scalpellum condensum u. sp.

(Textfig. 31.)

Beschreibung: Capitulum mit 14 stark verkalkten, gelblichweißen Platten, die von einer dünnen, unbehaarten Cuticula bedeckt sind. Zuwachslinien wahrnehmbar.

Rostrum klein, langgestreckt, in der Mitte von den Rostrolateralia bedeckt.
Textfig. 31. *Scalpellum condensum* n. sp.

a Labrum mit Palpus, Vergr. 143 mal.

b Mandibel, Vergr. 143 mal.

c I. Maxille, Vergr. 200 mal.

d II. Maxille, Vergr. 110 mal.

f Zwergmännchen, Vergr. 75 mal.

g Das Tier von der Seite.

h Carina von hinten.

i Das Tier von vorn, Vergr. 53 mal.

Zool. Bidrag, Uppsala, Bd. 7.
Rostrolaterale vierseitig, mit im Verhältnis zum Margo lateralis außerordentlich kleinem Margo rostralis. Dadurch erhält die Platte ein dreieckiges Aussehen. Die Höhe etwas geringer als die Breite.

Infralaterale vierseitig, mit Umbo beim zugesetzten basalen Teil. Ein Kiel aus dem Umbo geht zur entgegengesetzten Ecke.

Pedunculus in der Länge nicht größer als das halbe Capitulum. Form zylindrisch, nicht in die Seiten des Capitulums übergehend. Schuppen nicht transversal ausgezogen, sondern abgerundet, mit konvexem Oberrand, äußerst dicht sitzend, regelmäßig alternierend.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5.5</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4.5</td>
<td>3.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mundteile: Labrum mit spärlichen, spitzigen Zähnen. Die an der Seite sitzenden sind in mehrere Spitz geteilt.

Palpus von gewöhnlichem Aussehen, konisch.

I. Maxille mit oder ohne Einschnitt auf der Mitte des Vorderrandes. Untere Ecke spitzig, deutlich, mit etwas kleineren Stacheln.

II. Maxille mit beinahe geradem, nur schwach eingebogenem Vorderrand, dessen Borsten spärlicher sitzen als die entlang des Oberrandes angeordneten. Maxillarlobus außerordentlich kräftig entwickelt, einen quer abgeschnittenen Kegelstumpf von der Länge der Maxille bildend.

Segmentanzahl der Cirren von zwei Individuen:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 11,5 mm</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>—</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Länge 11 mm</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>13</td>
</tr>
</tbody>
</table>

Cirrus I kurz, mit verdickten Segmenten. Der eine Ramus um zwei Segmente länger als der andere. Die längeren Cirren mit fünf bis sechs
Paar Borsten am Vorderrand der Segmente. Einige Borsten auch an der Seite der Segmente, nicht nur an den drei vorderen Cirren, was gewöhnlich ist, sondern auch an den hinteren, wie bei Pilsbrys Gruppe Scalpellum japonicum.

Caudalanhang von der Länge des Protopoditen oder etwas länger, mit vier bis sechs Segmenten. An der Spitze wie auch im oberen Teil jedes Segmentes längere Borsten.

Penis fehlt.

Fundorte: Japan, Kiuschiu, Goto-Insel 15./5. 1914. S. Bock. R. M.
Japan, Sagami, Misaki, Okinose 16./7. 1914, 120 m tief. Auf Buccinum. S. Bock. R. M.
Japan, Sagami, Misaki, Okinose 29./6. 1914, 450 m tief. Auf Muscheln. S. Book. R. M.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Sammlung . . .</th>
<th>Länge des Capitulum</th>
<th>Breite des Capitulum</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoeks Exemplar</td>
<td>7.5</td>
<td>—</td>
<td>2.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Mundteile: Labrum mit spärlich sitzenden, mehr oder minder spitzigen, kräftigen Zähnen an der Kauffläche.

Palpus spitzig, mit wenigen Borsten an der Spitze und entlang der einen Seite.

Mandibel mit drei Zähnen und relativ spitziger, in einige kleinere Spitzen geteilter unterer Ecke.

I. Maxille mit geradem Vorderrand, der relativ große Stacheln trägt. Untere Ecke mit einer Anzahl etwas kleinerer Stacheln.

II. Maxille mit einer schwachen Einbuchtung in der Mitte des Vorderrandes, der ohne Borsten ist. Im hinteren Teil eine Gruppe Borsten, kein abgesetzter Maxillar-Lobus.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudal-Anhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 7,2 mm</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Textfig. 32. *Scalpellum ventricosum* (Hoek).

a Labrum, Vergr. 116 mal.
b Palpus, Vergr. 219 mal.
c Mandibel, Vergr. 116 mal.
d I. Maxille, Vergr. 164 mal.
e II. Maxille, Vergr. 164 mal.
f 6. Cirrus mit Caudalanhang, Vergr. 43 mal.
g Das Tier von vorn, h von der Seite, i von hinten, Vergr. 9 mal.

Caudalanhang aus drei Gliedern zusammengesetzt, schmal, von halber Länge des Protopoditen (Endborsten nicht mitgerechnet).

Penis fehlt.

Cyprislarven wurden in der Mantelhöhle angetroffen; es waren sieben Stück. Also ist auch bei dieser Tiefseeform die Entwicklung in das Muttertier verlegt (s. Kapitel Über Larven).

Alter Fundort: S. Lat. 10°35'-6', Ö. Long. 124°11'-7'. 2050 m tief.

Verbreitung: Diese Art, die bisher nur von zwei Lokalen gekannt ist, scheint eine ziemlich weite Verbreitung zu haben. Die Fundstellen liegen antipodal auf der südlichen Halbkugel und haben beide große Tiefe (2050—2675 m). Das Tiefseeleben scheint ziemlich gleichartige Lebensbedingungen zu schaffen, weshalb Tiefseeformen oft eine derartige weite Verbreitung aufweisen.

Scalpellum intermedium Hoek, 1883.

(Textfig. 33.)

Scalpellum intermedium Hoek, 1883. Weltner, 1897a, Gruvel, 1905a.

Scalpellum nipponense Pilsbry, 1907b.

Textfig. 33. *Scalpellum intermedium* Hoek.

a Mandibel, Vergr. 315 mal. b I. Maxille, Vergr. 161 mal. c II. Maxille, Vergr. 915 mal. d Cirrus mit Caudalanhäng (ca), Vergr. 36 mal. e Zwergmännchen, Vergr. 58 mal. f Das Tier (junges) von vorn, g von der Seite, h von hinten, Vergr. 83 mal.

Das hier bestimmte Material enthielt sowohl kleine als auch große Exemplare aus dem gleichen Lokal. Bei den kleineren waren die Platten vollständig verkalkt; die größeren hatten aber stärker verkalkte Platten als *Pilsbrys* Exemplar, sie entsprachen am ehesten dem von Hoek 1883 abgebildeten Tier. Bei der vorliegenden Art können also, wie bei *Sc. japonicum* Hoek, viele Verkalkungsstadien der Platten vorkommen. Hinsichtlich der von Pilsbry erwähnten Verschiedenheit zwischen den Platten der unteren Reihe fand ich folgendes:

Carinolaterale viereitig bis dreieckig, mit dem Umbo bei der Basis der Carina. Margo basalis gerade, Margo carinalis oberhalb des Umbo konkav.

Die mehr oder minder verkalkten Platten sind: Tergum, Scutum und Supralaterale, die auch mehr oder weniger V-förmig werden können.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
<td>2.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Innere Teile von Hoek nur unvollständig beschrieben, weshalb eine Vervollständigung gegeben werden soll.

Mundteile: Labrum mit spitzigen, spärlich sitzenden, dreieckigen Zähnen.

Palpus konisch, mit Borsten an der Spitze, entlang des Oberrandes und an der Außenseite.

Mandibel mit drei Zähnen und einer fein pektinierten unteren Ecke. Großer Abstand zwischen Zahn 1 und 2. Eine Mandibel zeigte eine Abnormität, indem Zahn 2 in zwei kleine Spitzen geteilt war.

1. **Maxille** hat nach Hoek geraden Vorderrand, was auch ich bei einem Exemplar fand. Ein anderes Exemplar zeigte aber in der oberen Hälfte eine deutliche, borstenlose Einsenkung. Untere Ecke deutlich.

2. **Maxile** mit beinahe geradem Vorderrand und dicht sitzenden Borsten. Hinterer Lobus nicht abgesetzt.

Segmentanzahl der Cirren von zwei Individuen:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 14 mm</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Länge 7,5 mm</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>—</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

Caudalanhang ungefähr von gleicher Länge wie das proximale Segment des Protopoditen; bei dem untersuchten Exemplar aus vier Segmenten zusammengesetzt. An der Spitze wie auch in den oberen Teilen jedes Segmentes lange Borsten.

Penis fehlt.

Zwergmännchen wurde in einem der größeren Exemplare angetroffen. Da Hoek eine Reihe Angaben darüber lieferte, kann hier ein Vergleich und eine Ergänzung von Interesse sein. Länge 0-80 mm. Wie Hoek angibt, ist das Zwergmännchen sackartig; doch ist hier die Reduktion nicht soweit vorgeschritten wie bei den meisten der oben beschriebenen Scalpellum-Arten. Man findet nämlich vier ovale, langgestreckte Platten um den einen Pol angeordnet, die wahrscheinlich den Scuta und Terga entsprechen. Hoek 1883 sagt darüber auf Seite 73: „Between these rudimentary valves there is probably an opening present, a tuft of hairlike cirri protrudes from this
opening, and may be traced for some distance within the cavity of the mantle”. In Übereinstimmung mit Hoek finde ich es ziemlich schwer, diese Einzelheiten zu beobachten. Doch kann ich zwischen den Platten eine Mantelhöhe sehen, aus der rudimentäre Cirren vorspringen. Diese zeigen eine Segmentierung. Im oberen Teil jedes Segmentes ist ein Borstenring vorhanden: das oberste Segment hat längere Borsten. Die Anzahl der Cirren dürfte schwer zu bestimmen sein; die Figur zeigt zwei.

Diskussion: Junge, weibliche Exemplare dieser Art mit vollständig verkalkten Platten zeigen ihrem Äußeren nach große Übereinstimmung mit *Se. ventricosum* Hoek, 1907 a. Das Zwergmännchen von *Se. ventricosum* ist nicht bekannt, aber ein Vergleich mit dem der nahestehenden Art *Se. gracile* Hoek, 1907 a zeigt eine Gleichheit. Daß aber das hier behandelte Material nicht mit den eben erwähnten Arten zusammengeführt werden kann, hat meiner Meinung nach mehrere Gründe. Ich weise nur auf das Aussehen der Platten bei ausgewachsenen Individuen und die Segmentanzahl der Cirren hin. Man findet nämlich bei einem Vergleich der Segmentanzahl der Cirren von *Se. ventricosum* und *Se. intermedium*, beide Arten an kleinen, mit ganz verkalkten Platten versehenen Individuen untersucht, einen wesentlichen Unterschied, wie aus der folgenden Tabelle hervorgeht.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se. ventricosum, Länge 7-5 mm</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Se. intermedium, Länge 7-5 mm</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>—</td>
<td>16</td>
</tr>
</tbody>
</table>

Alte Fundorte: S. Lat. 34° 13′, Ö. Long. 151° 38′, 740 m tief. S. Lat. 37° 34′, Ö. Long. 179° 22′, 1275 m tief, Stiller Ozean. Challenger-Expedition.

Japan, Manazura-zaki, 220 m, 485 m, Albatroß-Station 3697.

Neue Fundorte: Japan, Sagami, Misaki, Okinose 26. 6. 1914, 300 m tief; 8. 7. 1914, 600 m tief. S. Bock. R. M.
Verbreitung: Japans Küste, Stiller Ozean östlich von Australien und Neuseeland.

Genus *Lithotrya* G. B. Sowerby, 1822.

Lithotrya G. B. Sowerby, 1822.
Lepas Gmelin, 1789.
Litholepas De Blainville, 1824.
Absia Leach, 1825.
Brisnour et *Conchothrya* Gray, 1825.
Anatifa Quoi et Gaimard, 1832.
Lithotrya Darwin, 1851, und spätere Verfasser.

Verbreitung: Warme Meere.

Lithotrya truncata (Quoi et Gaimard, 1834).

(Textfig. 34.)

Anatifa truncata Quoi et Gaimard, 1834.
Lithotrya truncata Darwin, 1851, Weltner, 1897 a, Gravel, 1905 a, Hoek 1907 a.

Beschreibung bei Darwin 1851, Seite 366.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulum</th>
<th>Breite des Capitulum</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>10</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

Mundteile früher noch nicht abgebildet, weshalb hier Figuren geliefert werden.

Labrum halbkreisförmig ausgehöhlt, mit dicht sitzenden Borsten und Zähnen.

Palpus keulenförmig, mit beinahe geradem Oberrand. Stumpfe Spitze, Borsten entlang der Ränder und an den Seiten.

I. Maxille. Unter den oberen, kräftigeren Stacheln fand ich eine mehr oder weniger deutliche Einsenkung. Die Stacheln der unteren Ecke kleiner, abweichend von den in der Mitte sitzenden größeren.

II. Maxille mit einem die Borsten trennenden Einschnitt auf der Mitte des Vorderrandes. Borsten am Vorderrand kürzer, obere Ecke abgerundet.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulum 7, des Pedunculus 20</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Breite des Capitulum 10, des Pedunculus 8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge des Capitulum 10, des Pedunculus 14</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Breite des Capitulum 11, des Pedunculus 11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darwin's Angaben</td>
<td>—</td>
<td>—</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>—</td>
</tr>
</tbody>
</table>
Textfig. 34. *Lithotrya truncata* (Quoi et Gaimard).

a. Labrum, Vergr. 53 mal. b. Palpus, Vergr. 53 mal. c. Mandibel, Vergr. 70.5 mal. d. 1. Maxille, Vergr. 70.5 mal.

e. 2. Maxille, Vergr. 53 mal. f. 6. Cirrus mit Caudalanhang (co), Vergr. 25.5 mal.

Verbreitung: Freundschaftsinseln, Philippinen, Sundainseln.

Lithotrya truncata longicaudata n. subsp.¹)
(Textfig. 35 a.)

Diskussion: Bei der Bestimmung von Lithotrya truncata fand ich eine gewisse Verschiedenheit der Individuen. Einige waren kleiner und zeigten zugleich einen wichtigen inneren Unterschied, der darin bestand, daß die Caudalanhänge im Gegensatz zu denen der Hauptform sehr lang waren. Man könnte hiebei auch an einen Vergleich mit der Art Lithotrya valentiana J. E. Gray, 1825 aus dem Roten Meer denken, über die Darwin 1851, Seite 372 sagt: „It is just possible, though not probably, that this form may prove to be merely a variety or youger state of L. truncata, in which case this latter name would have to be sunk“. Über die Lateralia dieser Art sagt Darwin auf Seite 372: „Latera lost; no doubt they were rudimentary“. Grüssel 1902 b. will ein Exemplar aus Zanzibar als L. valentiana identifiziert haben und hebt als wichtiges Merkmal hervor, daß L. truncata rudimentäre Lateralia besäße, die jedoch bei L. valentiana fehlten. Dieser Unterschied scheint mir weniger

wesentlich, da es auch oft bei Exemplaren von *L. truncata* schwer ist, die Lateralia zu finden. Bei den hier beschriebenen Tieren fand ich sowohl Individuen mit rudimentären, als auch solche ohne Lateralia. Ob *L. valentiana* eine deutlich begrenzte Art vorstellt, was Darwin bezweifelt,

Textfig. 35.

b Ibla quadrivialis (Cuvier), 6. Cirrus mit Caudalanhang (*ca*), Vergr. 36 mal.
c Lepas unmerifera L., 6. Cirrus mit Caudalanhang (*ca*), Vergr. 53 mal,
d Lepas pectinata (Spengler), 1. Cirrus mit Filament (*f*).

lasse ich dahingestellt, da mir kein Material aus dem typischen Lokal, dem Roten Meer vorliegt. Daß die hier behandelten kleineren Exemplare nicht jüngere Individuen von *L. truncata truncata* sein können, geht meiner Meinung nach daraus hervor, daß hier die Caudalanhänge bedeutend länger als bei der Hauptform sind. Auch kann ich die Tiere aus mehreren Gründen nicht zu *L. valentiana* rechnen, welche Art hinsichtlich der Mundteile abweicht, sondern stelle eine neue Subspecies *longicaudata* auf.
Beschreibung:

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulum 3,2, des Pedunculus 7</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Breite des Capitulum 3,5, des Pedunculus 4,5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Länge des Capitulum 3, des Pedunculus 5,5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Breite des Capitulum 3, des Pedunculus 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hinsichtlich der Segmentanzahl der Cirren ist nichts Besonderes zu sagen.

Größe in Millimetern (Exemplare aus verschiedenen Lokalen):

<table>
<thead>
<tr>
<th>Länge des Capitulum</th>
<th>Breite des Capitulum</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4,5</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Nordwachter, Javasee. 1891. C. W. Aurivillius. U. M.
Verbreitung: Sundainseln.
Lithotrya nicobarica REINHARDT, 1850.

Lithotrya nicobarica REINHARDT, 1850, Darwin 1851, Weltner 1897 a, 1910, Gruvel, 1905 a, Hoek, 1907 a.

Lithotrya pacifica Borradaile, 1900, Gruvel, 1905 a, 1909, 1912 b, Pilsbry, 1907 b, Hoek, 1907 a.

Beschreibung bei Darwin 1851, Seite 359, Hoek 1907 a, Seite 122 und Gruvel 1912 b, Seite 347.

Gruvel spricht 1909 die Vermutung aus, daß *L. pacifica* sehr nahe mit *L. dorsalis* verwandt sei und möglicherweise mit dieser vereinigt werden könne. Soviel ich aus dem mir vorliegenden Material ersehen kann, scheint Pilsbrys Ausspruch über die Art, 1907 b, Seite 6 richtiger zu sein: „This form (*L. pacifica*) is probably not distinct specifically from *L. nicobarica*.“ Er nimmt aber doch die Art auf und hat auch Exemplare aus dem typischen Lokal.

Der wesentlichste Unterschied zwischen *L. nicobarica* und *L. pacifica* soll die ungleiche Länge der Lateralia sein. Übereinstimmung besteht hinsichtlich des inneren Kieles auf der Carina, den beide Arten zum Unterschied von *L. dorsalis* besitzen. Die Verschiedenheit der Lateralia soll hier näher geprüft werden. Bei den Lithotrya-Arten haben die Platten des Capitulum zahlreiche Zuwachslinien. Man kann die verschiedenen Zuwachschichten leicht voneinander losmachen und so die Länge der Platte verkürzen; das geschieht auch in der Natur. Bei jüngeren Individuen finden sich mehrere Zuwachslinien vor und deshalb ist die Platte länger. Durch Abnutzung werden nun die Platten der älteren Tiere wesentlich verkürzt. Der einzige Unterschied zwischen älteren und jüngeren Individuen besteht also hinsichtlich der Lateralia darin, daß die älteren kürzere Platten haben, wie sie z. B. Darwin für *L. nicobarica* abbildet. Bei jüngeren Tieren dagegen sind die Lateralia von gleicher Länge wie das Scutum und zeigen auch mehrere Zuwachslinien, übereinstimmend mit Borradailes Fig. 3.
Pl. LI 1900 von *L. pacifica*. Man kann auch mitunter Exemplare finden, die die Lateralia der einen Seite abgebrochen haben, während die der anderen Seite die normale, ursprüngliche Länge aufweisen. Diese gewöhnlich jüngeren und kleineren Individuen stimmen auch gut mit den für *L. pacifica* gelieferten Maßangaben Borradailes und Hoeks überein.

<table>
<thead>
<tr>
<th></th>
<th>Totalänge in Millimetern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borradaile</td>
<td>28</td>
</tr>
<tr>
<td>Hoek</td>
<td>25</td>
</tr>
<tr>
<td>Sammlung</td>
<td>26</td>
</tr>
</tbody>
</table>

Hinsichtlich der übrigen Platten ist wenig zu ergänzen.

Carina bei jüngeren Tieren oft außerordentlich lang, freistehend. Inwendig ausgehöht mit Mittelkiel bei sowohl jüngeren als auch älteren Individuen.

Tergum hat bei jüngeren, nicht abgenützten Exemplaren einen äußeren Mittelkiel, der die Zuwachslinien markiert, was auch Hoek 1907 a und Grøvel 1912 b für *L. pacifica* abbilden. Bei älteren Tieren, die abgebrochene Terga besitzen, verschwindet dieser Kiel.

Rostrum ist meistens auch bei jüngeren Individuen abgebrochen, was ebenfalls Borradaile findet. Hoek 1907 a gibt für *L. nicobarica* eine große Verschiedenheit der Anzahl der Zuwachszenen an, wie es ja natürlich ist. Bei den mir vorliegenden Exemplaren kann ich zwei bis sechs Zuwachszonen feststellen. Die untenstehende Tabelle notiert die Zonenanzahl der Platten für mehrere Tiere; die größeren mit geringerer Anzahl Zonen sind abgenützte Exemplare; die Platten sind in diesen Fällen auch kürzer.

<table>
<thead>
<tr>
<th></th>
<th>Totallänge der Tiere</th>
<th>Carina</th>
<th>Lateralia</th>
<th>Rostrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 mm</td>
<td>19</td>
<td>7</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>37 mm</td>
<td>15</td>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>40 mm</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>48 mm</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>55 mm</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>13</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>5,5</td>
<td>6</td>
<td>11,5</td>
<td>5</td>
</tr>
</tbody>
</table>
Segmentanzahl der Cirren.

<table>
<thead>
<tr>
<th>Größe der Individuen in Millimetern</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulums 6–5, des Pedunculus 15</td>
<td>9</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Breite des Capitulums 6, des Pedunculus 9</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>21</td>
<td>20</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Länge des Capitulums 10–5, des Pedunculus 26</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>21</td>
<td>20</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Breite des Capitulums 11, des Pedunculus 9</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>21</td>
<td>20</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Hoek's Angaben für Lithotrya nicobarica</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>13</td>
</tr>
</tbody>
</table>

Wie aus der Tabelle hervorgeht, stimmt Hoek's Exemplar von L. nicobarica am ehesten mit dem größeren der beiden untersuchten Individuen überein. Leider kann kein Vergleich mit Borradaile's Art angestellt werden, da sich keine Angaben der Segmentanzahl vorfinden.

Caudalanhang ungefähr halb so lang wie der sechste Cirrus. Segmentanzahl wechselt mit der Größe, ungefähr 20 Segmente.

Hinsichtlich der Mundteile verweise ich auf Darwin 1851 und Hoek 1907 a.

Verbreitung: Malayischer Archipel, Indischer Ozean, Neuseeland, Fidschi, Paumotuinsehln.

C. W. Aurivillius. R. M.

Familie Iblidae Annandale, 1909.

Fam. Tetraspidae Gruvel, 1902 b, 1905 a.
Subfam. Iblinae Pilsbry, 1907 b.
Fam. Iblidae Annandale, 1909 a.

Komplettierende Diagnose: Weibchen oder Hermaphrodit Capitulum mit vier, bei jüngeren Tieren chitinisierten, bei älteren verkalkten Platten. Pedunculus nicht deutlich vom Capitulum getrennt, mit langen Chitinstacheln, Körper liegt teilweise im Pedunculus. Palpus keulenförmig, mit abgerundetem Vorderrand; Oberrand konkav, in der Mitte meistens borstenlos. Mandibel

Verbreitung: Tropische Teile des Indischen und Stillen Ozeans.

Genus *Ibla* Leach, 1825.

Ibla Leach, 1825.
Anatifera Cuvier, 1817.
Clyptra Leach, 1817.
Tetralasmis Cuvier, 1830.
Ibla Darwin, 1851 und späterer Verfasser.

Ibla cumingi Darwin, 1851.

(Textfig. 36).

Ibla cumingi Darwin 1851, Weltner, 1897 a, Gruvel, 1905 a, Hoek, 1907 a, Krüger, 1911 a, 1911 b, Annandale, 1910 b, 1911 b.

Ibla sibogae Hoek, 1907 a, Annandale, 1910 b, 1911 b.

Beschreibung bei Darwin 1851, Seite 183 und Hoek 1907 a, Seite 47.

Textfig. 36. *Ibla cumingii* D.

Mandibel mit drei Zähnen (in einem Fall nur zwei) und einer pektinierten unteren Ecke. Manchmal findet man am Oberrand von Zahn 2 und 3 eine Pektinierung.

I. Maxille mit geradem Vorderrand, der Einschnitte aufweisen kann.

II. Maxille mit konkavem Vorderrand, nach oben zugespitzt.

Verbreitung: Rotes Meer, Indischer Ozean, Malayischer Archipel, Westlicher Teil des Stillen Ozeans.

Pulo Pasir, Sumatra. C. W. Aurivillius. U. M.
Rotti (Nordküste), Sundainseln. Juli 1899. C. W. Aurivillius. U. M.

Ibla quadrivalvis (Cuvier, 1817).

(Textfig. 35 b).

Anatifa quadrivalvis Cuvier, 1817.

 Clytira Leach, 1817.

Ibla cuvieriana J. E. Gray, 1825, 50.

Tetralasmis hirsutus Cuvier, 1830.

Anatifa hirsuta Quoy et Gaimard, 1834.

Beschreibung bei Darwin, 1851, Seite 203.

Komplettierende Beschreibung:

Mundteile im großen und ganzen mit denen der vorhergehenden Art übereinstimmend.

Palpus mit konkavem Oberrand, der mit oder ohne Abbruch der Borstenanordnung sein kann.

Hinsichtlich Zahn 2 und 3 der Mandibel sagt Darwin, 1851, Seite 205: „they do not appear pectinated“. Doch fand ich am Oberrand eine Pektinierung wie bei Ibla cumingi.

Neuer Fundort: Fidschi-Inseln. Wright, R. M.

Familie Oxynaspisidae Pilsbry, 1907.
Unterfamilie Oxynaspinae Gruvel, 1905 a.

Verbreitung: Circumtropisch. Auf Hornkorallen.

Genus Oxynaspis Darwin, 1851.

Oxynaspis Darwin, 1851, und späterer Verfasser.

Examinationstabelle.

a₁ Scutum nicht reduziert, Capitulum ganz von Platten bedeckt.
 Oxynaspis celsata Darwin, 1851, Fig. 1, Pl. III.

a₂ Scutum mehr oder minder reduziert, das Capitulum teilweise unbedeckt lassend.

b₁ Scutum im unteren Teil reduziert, der Form nach ungefähr dreieckig Carina mit subzentralem Umbo.
 Oxynaspis patens C. W. Aurivillius, 1894 b, Fig. 1, Taf. 3.

b₂ Scutum im inneren Teil reduziert, mit zwei längeren Fortsätzen nach oben und unten und zwei kürzeren lateralwärts. Carina mit Umbo nahe der Basis.
 Oxynaspis Bocki n. sp. (Fig. 1, Pl. III*).

 Oxynaspis Aurivillii Stebbing, 1900.
Oxynaspis celata Darwin, 1851.
(Textfig. 37.)

Oxynaspis celata Darwin, 1851, Weltner 1897 a, Gruvel, 1905 a.

Beschreibung bei Darwin, 1851, Seite 134.

Komplettierende Beschreibung: (Mundteile vorher nicht abgebildet). Labrum, wie Darwin angibt, mit einem vorspringenden Teil, ohne Zähne.

Palpus etwas konisch, stumpf, mit Borsten am Ende und entlang eines Randes.

I. Maxille mit oder ohne Einschnitt auf der Mitte. Untere Ecke ziemlich vorspringend.

II. Maxille quadratisch, mit geradem Vorderrand, mit über die Ränder zerstreuten Borsten.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge: 10 mm</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Breite: 7 mm</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Länge: 7.5 mm</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Breite: 5 mm</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Cirrus I kürzer als die übrigen. Die längeren Cirren mit 4—5 Paar Borsten am Vorderrand.

Penis vorhanden.

Caudalanhang in Form einer unbedeutenden Erhöhung, mit einigen langen Borsten an der Spitze.

Alte Fundorte: Madeira, Japan, Westaustralien. Auf Anthipathes. Subspec. indica Annandale in der Bay of Bengal.
Textfig. 37. *Oxynaspis celata* D.

a Mundkegel, Vergr. 32 mal.
b Palpus, Vergr. 81 3 mal.
c, d, e Mandibel, Vergr. 81 3 mal.
f I. Maxille, Vergr. 142 mal.
g II. Maxille, Vergr. 81 3 mal.
h 6. Cirrus mit Caudalanhang (ca), Vergr. 85 mal.
Fundort: Japan, Kiuschiu, Goto-Inseln, 220—400 m tief. Auf Antipatharien. 15./5. 1914. S. Bock. R. M. U. M.

Diskussion: Die von Annandale 1909 a beschriebene Subspezies *indica* wird vom gleichen Verfasser 1914 zur Spezies erhoben. Auf Grund dessen, was man bei einem Vergleich mit Darwin's hier untersuchter Art finden kann, scheint mir diese Erhöhung nicht annehmbar. Die für Annandales Art erwähnten Charaktere, nämlich: kürzerer basaler Teil der Carina, inwendig stärker konkave Carina, stärker zerteilte Ränder auf Scutum und Tergum, gleichlange Rami auf Cirrus II, stärker gebogene Cirren, scheint ich als unbedeutend an. Hinsichtlich der Lage des Umbos auf der Carina (bei der Subsp. *indica*) sagt Annandale 1909 a, Seite 70: „The bas al branch about half as long as the vertical one.“ Das stimmt aber sowohl mit Darwin's, Fig. 1a, Pl. III, als auch mit dem mir vorliegenden Material gut überein, weshalb dieses Merkmal von geringerer Bedeutung ist. Die Carina ist nach Darwin inwendig „deeply concave“, was ich auch bei dem mir vorliegenden Material fand. Die übrigen aufgezählten Charaktere erscheinen als allzu unbedeutend, als daß hiedurch Annandales Art von der Darwin's getrennt werden könnte. Die Cirren können natürlich bei den verschiedenen Exemplaren mehr oder weniger gebogen sein.

Oxynaspis Bocki n. sp.

(Textfig. 38, Taf. IIIa. 1.)

Platten weiß, Mantel und Pedunculus gelb mit rotbraunen Längsbändern. Eines geht an jeder Seite von der Basis des Pedunculus zur basalen Ecke des Tergums und setzt sich rund um diese Platte fort, außerdem findet sich ein rostrales Band auf dem Pedunculus, das sich beim Capitulum in zwei kurze Zweige teilt.

Textfig. 38. Oxynaspis Bocki n. sp.

Capitulum mit Platten, deren Zuwachslinien undeutlich sind.

Scutum von für die Art charakteristischer Form, wie bei O. patens reduziert, so daß zwischen den Platten eine große Partie unbedeckt bleibt. Margo ocelludens gerade, mit etwas subzentral gelegenem Umbo. Margo tergalis ziemlich kurz, undeutlich abgesetzt, Margo lateralis mit einer vor-springenden Mittelpartie, die in zwei Spitzen geteilt ist. Margo basalis kurz. Die Form kann man also kurz so beschreiben: Aus dem Umbo gehen lateral zwei kurze, nach oben und unten je zwei längere Zweige aus.
Tergum dreieckig, mit etwas konvexem Margo oeculends. Margo basalis mit einem vorderen Einschnitt, in welchem der obere Lobus des Scutums liegt.

Carina in einem Winkel gebogen, mit Umbo ein wenig ober der Basis. Oberer Teil konvex, unterer Teil in eine Furca geteilt, die schmälere und längere Zweige hat als die folgende Art.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3.5</td>
<td>6.5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Mundteile: Labrum zungenartig ausgezogen, ausgehöhlt, mit einem Kranz stumpfer, spärlich sitzender Zähne.

Palpus etwas konisch, an der Spitze stumpf, mit Borsten entlang des Oberrandes, an den Seiten und an der Spitze.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge: 8 mm</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Länge: 10 mm</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>---</td>
</tr>
</tbody>
</table>

Caudalanhang fehlt, wie bei O. patens, welche Art ich an Typenmaterial näher untersuchte.

Oxynaspis Aurivillii Stebbing, 1900.

Das Exemplar saß auf einer Antipatharie, trug zerstreute Chitinstacheln, die auch hier mit Sicherheit dem Tiere angehörten und nicht von der Koralle gebildet waren. Dem Äußeren nach schließt sich die Art nahe an *O. Bocki* an, ist aber von dieser Art deutlich durch die Form der Platten unterschieden.

Capitulum langgestreckt, nach oben zu spitzig, mit zerstreuten, braun pigmentierten Flecken bedeckt, wie es auch Stebbing angibt.

Tergum dreieckig, schmal, mit geraden Seiten.

Pedunculus bei diesem Exemplar größer als bei Stebbing, von gleicher Länge wie das Capitulum, braun pigmentiert.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>5.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Mundteile: **Labrum** zungenförmig ausgezogen, rinnenförmig ausgehölt, mit einem halbkreisförmigen Zahnkranz.

Palpus konisch, mit Haaren an der Spitze und entlang der Ränder. **Mandibel** mit vier Zähnen und einer spitzigen unteren Ecke, in deren Nähe Zahn 4 sitzt.
I. Maxille mit einem Einschnitt auf der Mitte. Darüber kräftige, darunter kleinere und zahlreichere Stacheln.

II. Maxille quadratisch mit etwas konvexem Vorderrand, der Borsten trägt.

Die Mundteile stimmen also in der Hauptsache mit denen der übrigen Oxynaspis-Arten überein.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge: 11.5 mm</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Hinsichtlich des Caudalanhauses sagt STEBBING 1900, Seite 675: „Caudal appendages seem to consist of two little, adjacent rounded plates, and therefore not to be wanting as in O. patens." Bei dem einzigen mir vorliegenden Exemplar konnte ich leider nicht entscheiden, ob sich solche vorhanden. Im allgemeinen dürfte man sagen können, daß diese Anhänge bei der Oxynaspis äußerst rudimentär seien. Bei Exemplaren von O. celata, für welche Art sie beschrieben wurden, stellen sie unbedeutende, borstentragende Erhöhungen vor.

Penis lang und schmal, mit zerstreuten Borsten.

Familie Lepadidae Darwin, 1851.

Subfam. Lepadinae (in parte) + Alepadinae (in parte) PILGR, 1907 b.

Subfam. Lepadinae (— Heteralepas) ANNADELE, 1914.

vorhanden, gewöhnlich mehrere an jeder Seite. Caudalanhang fehlt oder mehr in Form eines krallenförmigen Gliedes vorhanden.

Genus *Lepas* Linné, 1767.

(Textfig. 35 c.)

Lepas Linné, 1767.

Anatifa Bruguière, 1789.

Anatifera, Lister.

Pentalasmis Leach, 1817.

Pentalepas De Blainville, 1824.

Dosina J. E. Gray, 1825.

Lepas Darwin, 1851 und späterer Verfasser.

Diagnose bei Gruvel, 1905 a, Seite 106.

Verbreitung: Pelagisch in allen Meeren.

Beim Genus *Lepas* besteht eine Gleichförmigkeit hinsichtlich des Aussehens der Mundteile, weshalb diese hier nicht zur Unterscheidung der Arten verwendet werden können. Doch sind die Arten deutlich durch andere Charaktere, wie: Platten des Capitulums, Filamentanhänge und Caudalanhänge getrennt.

Lepas anserifera Linné, 1767.

Lepas anserifera Linné, 1767.

Anatifa striata Bruguière.

Pentalasmis dilatata Leach, 1818.

Anatifa sessilis Quoy et Gaimard, 1832.

Lepas nauta Macgillivray.

Pentalasmis anseriferus Brown, 1844.

Lepas anserifera Darwin, 1851. Hoek, 1883. 1907 a. Gruvel, 1905 a, 1909, 1911 a, 1912 b, Weltner, 1897 a, b, Pilsbry, 1907 b, 1911 c, Annandale, 1908, 1909 a, 1910 b, Sumner, 1911.

L. denticulata Gruvel, 1902 b.

Diagnose bei Gruvel, 1905 a, Seite 104.

Ausführlich besprochen von Darwin und anderen Verfassern.

Fundorte: Atlantischer Ozean: N. Lat. 7°30', W. Long. 24°10'. 9./1. 1892. J. MEYER. R. M.
N. Lat. 32°, W. Long. 43°, J. MEYER. R. M.
N. Lat. 28°46', W. Long. 55°10'. Joseph.-Exp. 1869. R. M.
N. Lat. 32°46', W. Long. 58°52'. Joseph.-Exp. 1869. R. M.
N. Lat. 32°30', W. Long. 43°10', J. MEYER. R. M.
N. Lat. 25°. Ekström. R. M.
N. Lat. 6°15', W. Long. 25°. 28.8. 1886. G. v. Scheele. U. M.
Kamerun, Bibundi. 20./9. 1892. JUNGER. R. M.

Stillers Ozean: Japan, Bonininseln (Ogasawara) Taki no ura. Im Wasserspiegel, auf Bimsstein. 28.7., 29.7., 2.8., 3.8., 9.1914, S. BOCK. U. M.
Indischer Ozean: S. Lat 4°20', Ö Long. 85°34'. 20./9. 1902. G. Dn. Schiff „P. Wikström jun.“. U. M.
S. Lat. 8°44', Ö Long. 83°13'. 23./9. 1902. G. Dn. Schiff „P. Wikström jun.“. U. M.

Lepas pectinata Spengler, 1793.

(Textfig. 35 d.)

Lepas pectinata Spengler, 1793.
Lepas muriata (var.) Poli, 1795.
Lepas anserifera Poli, 1795.
Lepas sulcata Montagu, 1803.
Pentalasmis spirulae Leach, 1818.
Pentalasmis sulcata Leach, 1824.
Pentalasmis radula (var.) et *sulcatus* Brown, 1844.
Pentalasmis inversus Chenu.
Anatifia sulcata Quoy et Gaimard, 1822.
Lepas pectinata Darwin, 1851, Hoek, 1883, Weltner, 1897 a, 1910, Gruvel. 1905 a, 1909, 1910, 1912 b, Pilsbry, 1907 b, e, 1911 c, Sumner, 1911, Borradaile, 1916.

Diagnose bei Gruvel 1905 a, Seite 107.
Beschreibung bei Darwin 1851, Seite 85.

Exemplare aus dem Mittelmeer und den Azoren hatten einen dunklen Mantel, der durch die Schale sichtbar war, andere Exemplare aus dem Atlantischen Ozean wieder waren weiß, ohne Spur einer Pigmentierung.

Filamentanhänge können, nach Darwin, auch fehlen. Doch fand ich an allen untersuchten Exemplaren einen an jeder Seite (Textfig. 35 d).

Verbreitung: Pelagisch in allen Meeren, meist in den tropischen.

Fundorte:
- Mittelmeer: Messina. 1888. A. Appellöf. R. M.
- Ville Franche. März 1888. Hj. Théel. R. M.

N. Lat. 35°18′, W. Long. 37°0′. 5./9. 1891. J. Meyer. R. M.
N. Lat. 39°25′, W. Long. 29°55′. 26./1. 1891. J. Meyer. R. M.
N. Lat. 41°22′, W. Long. 10°22′. Joseph. Expedition 1869. R. M.
N. Lat. 1°40′, W. Long. 23°15′. 17./4. 1895. J. Meyer. R. M.

Westindien. Auf Janthina communis. U. M.

Stiller Ozean: S. Lat. 29°50′, Ö. Long. 172°0′. 31./3. 1896. R. M.
N. Lat. 35°25′, Ö. Long. 176°44′. 1890. Fristedt. R. M.

Indischer Ozean: S. Lat. 4°20′, Ö. Long. 85°34′. 20./9. 1902. G. Dn. Schiff „P. Wikström jun.“ U. M.
S. Lat. 28°21′, W. Long. 86°10′. 23./10. 1893. J. Meyer. R. M.
S. Lat. 8°44′, Ö. Long. 83°13′. 23./9. 1902. G. Dn. Schiff „P. Wikström jun.“ U. M.
S. Lat. 13°34′, Ö. Long. 79°51′. 26./9. 1902. G. Dn. Schiff „P. Wikström“. U. M.

Lepas anatifera Linné, 1767.

Lepas anatifera Linné, 1767.
Anatifa, Anatifera oder *Pentalasmis*
Levis mehrerer Verfasser.
Anatifia eugonata Conrad, 1837.
Anatifia dentata (var.) Bruguière, 1789.
Pentalasmis dentatus (var.) Brown.
Lepas anatifera Darwin, 1851, Hoek, 1883, A. W. Malm, 1882, Weltner, 1895, 1897 a, b, 1900, 1910, Nordgaard, 1905, Gruvel 1905 a, 1909, 1910, 1912 b, Pilsbry, 1907 b, c, 1910, 1911 c, Stebbing, 1910, Annandale, 1906 a, 1909 a, A. E. Ortmann, 1911, Sumner, 1911, Krüger, 1911 a, P. Hughes, 1914, Jennings, 1915.

Diagnose bei Gruvel 1905 a, Seite 108.

Beschreibung bei Darwin 1851, Seite 73. Mundteile von Krüger 1911 abgebildet.
Von dieser Art untersuchte ich mehrere Exemplare aus verschiedenen Gebieten. Weltner 1900 erwähnt, daß er bei einigen Tieren auch einen inneren Zahn am linken Scutum gefunden habe. Die mir vorliegenden Exemplare haben jedoch nur am rechten Scutum einen Zahn, was auch als für diese Art typisch angegeben wird. Dieser Zahn war aber verschieden ausgebildet, was zeigt, daß eine Variation stattfinden kann.

Verbreitung: Pelagisch, außerordentlich häufig in allen Meeren.

Fundorte:

Lepas australis Darwim, 1851.

Lepas australis Darwin, 1851, Hoek, 1883, 1907 a, Weltner, 1895, 1897 a, Gruvel, 1905 a, 1907 b, 1910, 1912 b, Stebbing, 1910.

Diagnose bei Gruvel 1905 a, Seite 109.

Beschreibung bei Darwin 1851, Seite 89.

Verbreitung: Pelagisch, häufig in südlichen Meeren. Hinsichtlich der Verbreitung sagt Hoek 1907 a, Seite 1: „*Lepas australis* D. which Darwin believed to be confined to the Southern Ocean have not hitherto been observed in the East Indian Archipelago.“ Diese Angabe kann mit dem vorliegenden Material, das auch Exemplare von Java im malaiischen Archipel umfaßt, ergänzt werden.

Neue Fundorte: Java, 1899. C. W. AudiviLLUS. R. M.) Stiller Ozean: S. Lat. 46° 0', W. Long. 142° 30'. 12./8. 1896. J. Meyer. R. M.

Lepas Hillii (Leach, 1818).

Anatifla oder *Pentalasmis laevis* mehrerer Verfasser.

Pentalasmis Hillii Leach, 1818.

Pentalasmis Cheloniae Leach, 1818.

Anatifla tricolor Quoy et Gaimard, 1827.

Anatifla substrita Conrad, 1837.

Lepas Hillii Darwin, 1851, Hoek, 1883, A. W. Malm, 1882, Weltner, 1897 a, Gruvel, 1902 b, 1905 a, 1907 b, 1910, 1912 b, Stebbing, 1910, Pilsbry, 1907 b, Sumner, 1911.

Diagnose bei Gruvel 1905 a, Seite 110.

Beschreibung bei Darwin 1851, Seite 77.

Das hier untersuchte Material aus verschiedenen Gebieten zeigte hinsichtlich der inneren Teile geringe Variation.

Verbreitung: Pelagisch in allen Meeren.

Lepas fascicularis Ellis und Sollander, 1786.

(Textfig. 40 a.)

Lepas fascicularis Ellis und Sollander, 1786.

Lepas cygnoae Spengler, 1790.

Lepas fascicularis Montagu, 1803.

Lepas dilatata Donovani, 1804.

Pentalasmis spirulicola und Donovani, Leach, 1818.

Pentalasmis fascicularis Brown, 1844, A. W. Malm, 1882.

Anatifa vitreca Lamarck.

Dosima fascicularis J. E. Gray, 1825.

Pentalapea vitreca Lesson, 1830.

Anatifa oceanica Quoy et Gaimard, 1832.

Lepas fascicularis Darwin, 1851, Hoek, 1883, Weltner, 1897 a, b, 1900, Gravuel, 1905 a, 1907 b, 1910, 1912 b, Pilsbry, 1907 b, e, Hoek, 1907 a, Stebbing, 1910, Summer, 1911, A. R. Nichols, 1915.

Lepas fasciculatus P. Hughes, 1914.

Diagnose bei Gravuel 1905 a, Seite 105.

Ausführlich beschrieben bei Darwin 1851, Seite 92.

Verbreitung: Auf schwimmenden Gegenständen in allen gemäßigten und tropischen Meeren.

Lepas fascicularis Aurivillii u. subsp.

(Textfig. 40 b.)

Diagnose: Im Äußeren gleich der Hauptform, mit einer Carina, die oben die gleiche Breite wie die Hauptform hat. Cirren etwas kürzer, mit breiteren Segmenten, überall von feinen Haaren bekleidet.

Beschreibung: Bei einem Vergleich zwischen atlantischen Individuen der Hauptform und Exemplaren aus Bangkok (Siam) und der Javasee, fand ich, sogar bei gleich großen Tieren, Verschiedenheiten hinsichtlich der Cirren. Die atlantischen Exemplare hatten mit Borsten bewaffnete
Segmente, die aber ohne Haarbekleidung waren. Tiere aus Siam und der Javasee trugen an den Cirren außer den gewöhnlichen Borsten eine ziemlich dichte Haarbekleidung. Außerdem findet man die Cirren etwas kürzer, da die Segmente verkürzt und breiter sind. Ich nehme die Exemplare deshalb als eine besondere Varietät Aurivillii auf. Darwin beschreibt zwar eine Varietät villosa aus dem Atlantischen Ozean, die einen haarigen

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des</th>
<th>Breite des</th>
<th>Länge des</th>
<th>Breite des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitulums</td>
<td>Capitulums</td>
<td>Pedunculus</td>
<td>Pedunculus</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Genus **Conchoderma** *Olfers, 1814.*

Conchoderma *Olfers, 1814.*

Lepas *Linne, 1767.*

Branta *Oken, 1815.*

Otion und Cineras *Leach und andere Verfasser.*

Malacotta und Senocula *Schumacher, 1817.*

Gymnolepas *Cuvier de Blainville, 1824.*

Pamina *J. E. Gray, 1825.*

Conchoderma *Darwin 1851 und späterer Verfasser.*

Diagnose bei *Gruvel 1905 a, Seite 143.*

Verbreitung: Pelagisch in allen Meeren, auf lebenden und toten Objekten.

Conchoderma auritum (*Linne, 1767*).

(Textfig. 41.)

Lepas aurita *L., 1767.*

Otion Curierianus, Blainvillianus,

Bellianus, Dumerillianus, Risoanus Leach, 1825.

Otion depressa et saccutifera *Coates, 1829.*

Otion auritus *Macgillivray, 1845.*

Lepas Leporina *Poli, 1795.*

Conchoderma auritum et leporinum *Olfers, 1814.*

Lepas corvuta *Montagu, 1815.*

Branta aurita *Oken, 1815.*

Malacotta biscalis *Schumacher, 1817.*

Gymnolepas Cuvierii de Blainville, 1824.

Conchoderma aurita *Darwin, 1851 und späterer Verfasser.*

Diagnose bei *Gruvel 1905 a, Seite 144.*

Beschreibung bei *Darwin 1851, Seite 141.*
Mundteile bisher nicht abgebildet, weshalb Figuren geliefert werden, die die Übereinstimmung mit Lepas zeigen.

Fundorte: Stiller Ozean: Südgeorgien auf Coronula diadema auf dem Wal Megaptera, 11./5. 1905, E. Sörling; maj 1909, A. Jonsson; C. Lindquist 1916; S. Lat. 41°38', Ö. Long. 114°49' 18./12. 1895. R. M.

Verbreitung: Pelagisch in allen Meeren, oft auf Coronula diadema.
Conchoderma virgatum (Spengler, 1790).

Lepas virgata Spengler, 1790.
Lepas coriacea Poli, 1795.
Lepas membranacea Montagu, 1808.
Conchoderma virgatum Olfers, 1814.
Branta virgata Oken, 1815.
Sencelia fasciata Schumacher, 1817.
Cineras cranchii, chelonophilns olfersii Leach, 1817.
Cineras megalepis, Montagu, Rissoanus Leach, 1825.
Cineras membranacea MacGillivray, 1845.
Cineras bicolor Risso, 1826.
Cineras vittatus Brown, 1844.
Gymnolepas Cranchii De Blainville, 1824.
Pamina trilineata J. E. Gray, 1825.
Conchoderma virgatum Darvin, 1851 und späterer Verfasser.

Diagnose bei Annandale 1909 a, Seite 82.

Verbreitung: Kosmopolitisch. Pelagisch, besonders an Booten. Die typische Form ist bisher noch nicht aus Japan gekannt gewesen; Krüger 1911 a beschreibt aber var. Hunteri und eine neue var. japonica aus diesem Gebiet.

Genus Alepas Sander Rang, 1829.

Gymnolepas C. W. Aurivillius, 1894 b, Gruvel, 1905 a.
Eremolepas Weltner, 1897 a.
Alepas Pilkey, 1907 b, 1912, Annandale, 1909 3, 1914.

Diagnose bei Annandale 1914, Seite 276.

Alephas pacifica PILSBRY, 1907.

(Textfig. 42.)

Alephas pacifica PILSBRY, 1907 b.

Beschreibung bei PILSBRY 1907 b, Seite 105.

Komplettierende Beschreibung: Das Exemplar stimmt gut mit der Originalbeschreibung überein.

<table>
<thead>
<tr>
<th>Grösse in Millimetern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulums</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

| Länge des Pedunculus | Breite des Pedunculus |
| 7 | 3:5 |

Cirren: Wie PILSBRY (1907 b, Fig. 34 c) finde auch ich einen Abbruch der Borstenbewaffnung an den Segmentseiten der hinteren Cirren, während die vorderen eine mehr zusammenhängende Borstenanordnung besitzen.

Ein Vergleich zwischen der Segmentanzahl PILSBRYs und des mir vorliegenden Exemplars zeigt die unbedeutende Variation der kurzen Cirren.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammlung:</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Länge des Capitulums</td>
<td>22</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Länge des Pedunculus</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

PILSBRYs	6	7	8	8	10	10
Länge des Capitulums	36	9	10	10	12	12
Länge des Pedunculus	7	9	9	10	10	12

Filamentanhänge fand ich auch bei dieser Art, obwohl diese von PILSBRY nicht erwähnt werden; wieviel es sind, konnte ich nicht mit Bestimmtheit entscheiden, doch fand ich die Anhänge an der Basis mehrerer der längeren Cirren. ANNANDALES 1914 neue Art Alepas investigatoris, die als *A. pellucida* Auriv. und *A. pacifica* PILSBRY nahestehend angegeben wird, soll von den zwei genannten Arten durch das Vorkommen von Filamentanhängen unterschieden sein; mit dem Nachweis dieser Anhänge bei *A. pacifica* fällt also diese Verschiedenheit hinweg und die Art *A.*

Textfig. 42. Alepas pacifica PILSBRY.

a Labrum mit Palpi (p), Vergr. 25.5 mal. b, c, d Mandibel, Vergr. 36 mal. e I. Maxille, Vergr. 54 mal. f II. Maxille, Vergr. 36 mal.

Mundteile: Labrum ist bisher noch nicht beschrieben worden. Es ist schwach angeschwollen und trägt einen halbkreisförmigen Kranz spitziger, dicht sitzender Zähne. Der Palpus ist hier von außerordentlich merkwürdigem
Bau. Er ist nicht wie gewöhnlich konisch, sondern halbkreisförmig, mit Borsten an den Rändern.

Mandibel mit fünf Zähnen und einer in ein oder zwei Spitzen geteilten unteren Ecke. Der untere Rand der Zähne trägt kleinere Zähnchen.

I. Maxille hat zu oberst einen kräftigen und darunter einen kleineren Stachel und außerdem ein Bündel kleinerer (borstenartiger) Stacheln.

II. Maxille halbkreisförmig.

Fundort: Südhlicher Atl. Ozean. Düben. R. M.

Verbreitung: Diese Art scheint ein ziemlich großes Verbreitungsgebiet zu haben. PILSBRY 1907b sagt darüber auf Seite 106: „The essentially pelagic habit of the genus leads us to anticipate wide dispersion of the species.”

Familie Heteralepadidae n. fam.

Typus: Heteralepas rex PILSBRY, 1907d.

Diskussion: Der Genus Heteralepas wurde hier in eine besondere Familie gestellt, da seine zwei in mehreren Hinsichten gleichen, in anderen voneinander abweichenden Subgenera auf Grund von Verschiedenheiten in den Mundteilen nicht zu der in dieser Hinsicht wohlabgegrenzten Familie Lepadidae gerechnet werden können. ANNANDALE 1909a sagt auf Seite 84: „I seems clear that the genus Heteralepas (sensu lato) affords a link between the subfamilies Lepadinae and Alepadinae.” Ob dies aber so selbstverständlich ist, dürfte unsicher sein. Zwar finden sich kleinere Übereinstimmungen mit Lepas, z. B. hinsichtlich der Mandibel und des Filamentanhanges, was auf eine entferntere Verwandtschaft deutet, doch darf man deshalb definitiv nicht annehmen, daß Heteralepas ein Glied zwischen jenen Subfamilien bilde. Da der Genus ziemlich freistehend zu sein scheint, ist es angezeigt, für ihn, wie es schon früher für Oxynaspis gemacht wurde, eine neue Familie aufzustellen.
Genus *Heteralepas* Pilsbry, 1907.

S. (in parte) Darwin, 1851, Hook, 1883, 1907 a, C. W. Aurivillius, 1894 b, Gruvel, 1905 a, Annandale, 1905, Pilsbry, 1907 b, 1907 d.

Heteralepas Pilsbry, 1907 b, 1911 c, Annandale, 1909 a, 1914 a, Krüger, 1911 a.

Verbreitung: Warme und gemäßigte Meere.

a) Subgenus *Heteralepas* Pilsbry, 1907.

Diagnose bei Krüger, 1911 a, Seite 30.

Heteralepas (Heteralepas) japonica (C. W. Aurivillius, 1894).

(Textfig. 43, Taf. III a, 4.)

Alepas japonica C. W. Aurivillius, 1894 b, Weltner, 1897 a, Gruvel, 1905 a, *Heteralepas japonica* Pilsbry, 1911 c, Krüger, 1911 a.

Beschreibung bei Aurivillius 1894 b, Seite 28, Pilsbry 1909 a, Seite 71 und Krüger 1911 a Seite 33.

Komplettierende Beschreibung: Von dieser Art stand mir nur ein im Verhältnis zu Typenexemplaren ziemlich kleines Individuum zur Verfügung. Es kann von Interesse sein zu erwähnen, daß hier die bei den Typenexemplaren längs des Rückenkammes vorkommenden Höcker nicht ange troffen wurden. Da aber im übrigen volle Übereinstimmung mit den Typenexemplaren herrschte, meine ich das Individuum zu dieser Art rechnen zu müssen. Hinsichtlich des Vorkommens von Rückenhöckern bei *Heteralepas cornuta* sagt Aurivillius 1894 b, Seite 32: "Solche treten doch bei *A. cornuta* nicht konstant auf." Zwar war das mir vorliegende Tier etwas leichter als die Typenexemplare, doch glaube ich kaum, daß dieser Farbennutzerschied hinreicht, es von der Hauptform zu trennen und zu Krügers...

Textfig. 43. *Heteralepas japonica* Auriv.

a Labrum mit Palpus, Vergr. 47 mal.
b Mandibel, Vergr. 47 mal.
c I. Maxille, Vergr. 70 mal.
d II. Maxille, Vergr. 53 mal.

<table>
<thead>
<tr>
<th>Größe in Millimetern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulums</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Cirren: Als Vergleich kann eine Tabelle über die Segmentanzahl der ersten, fünften und sechsten Cirren und der Caudalanhänge des mir vorliegenden Exemplares und eines Tieres des Typenmaterials gegeben werden; damit will ich außerdem Aurivillius' und Krügers Angaben vergleichen.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge 16 mm</td>
<td>10</td>
<td>18</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Länge 24 mm</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>Aurivillius' Angaben . .</td>
<td>10</td>
<td>20—21</td>
<td>16</td>
<td>50—52</td>
</tr>
<tr>
<td>Krügers Angaben</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Verbreitung: Japanische Meere.

Neuer Fundort: Japan, Kiushiu, Sato-no-misaki; 270 m tief; auf einer Krabbe. 13./5. 1914. S. Bock. R. M.

Heteralepas (Heteralepas) quadrata (C. W. Aurivillius, 1894).

Alepas quadrata C. W. Aurivillius, 1894 b, Weltner, 1897 a, Gruvel, 1905 a, Krüger, 1911 a.

Diagnose bei Gruvel, 1905 a, Seite 159.
Beschreibung bei Aurivillius 1894 b, Seite 30, Krüger 1911 a, Seite 33.

II. Maxille hat die Borsten in drei Gruppen aufgeteilt, wie ich es auch bei anderen *Heteralepas*-Arten fand. Aus Krüger Fig. 52 geht dies jedoch nicht hervor.

Alte Fundorte: Javasee, Kalifornien, Japanische Meere.

b) Subgenus Paralepas Pilsbry, 1907.

Diagnose bei Krüger, 1911 a, Seite 34.
Heteralepas (Paralepas) pedunculata? (Hoek, 1883).

(Textfig. 44.)

Heteralepas pedunculata Hoek, 1883.

Die verschiedenen Arten dieses Subgenus zeigen hinsichtlich der Mundteile große Übereinstimmungen. Zu Vergleichszwecken gebe ich Figuren der Mundteile des mir vorliegenden Exemplares, woraus die Übereinstimmung mit Krügers 1911 a, Fig. 65—67 hervorgeht.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Nach Hoek soll der Pedunculus dieser Art länger als der der übrigen sein. Doch darf hierauf nicht allzu großes Gewicht gelegt werden. Ich sah bei der Art *P. minuta*, die der Beschreibung nach einen kurzen Pedunculus haben soll, sowohl Exemplare mit langem, als auch solche mit kurzem.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammlung</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>13</td>
<td>13 abgeb.</td>
</tr>
<tr>
<td>Hoeks</td>
<td>6</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Alte Fundorte: S. Lat. 34°13'. O. Long. 151°38'; 740 m tief. Stiller Ozean.
Japan, Sagami, Aburatsubo.
Fundort: Japan, Yokuskasund, Sagami; 135 m. tief. 19./6. 1914.
S. Bock. R. M.

Heteralepas (Paralepas) typica n. sp.

(Textfig. 45, Tafel III*, 3.)

Textfig. 45. *Paralepas typica* n. sp.

a Palpus, Vergr. 41 mal. b Mandibel, Vergr. 32 mal. c I. Maxille, Vergr. 47 mal. d II. Maxille, Vergr. 32 mal. e Cirrus mit Caudalanhang (eo) und Penis (p) 23 mal. f 6. Segmente, Vergr. 41 mal. g Cirrus I mit Filamentanhang.

Pedunculus von ungefähr gleicher Länge wie das Capitulum, der Form nach zylindrisch, nicht lateral zusammengedrückt.

<table>
<thead>
<tr>
<th>Größe in Millimetern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Capitulums</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Farbe des Alkoholexemplars gelbbraun.

II. Maxille mit schwach konvexem Vorderrand, der zusammenhängend kurze Borsten trägt. Im hinteren Teil des Oberrandes eine Borstengruppe.

Cirren von dem für den Subgenus gewöhnlichen Typus, mit gleich langen Rami auf Cirrus V und VI.
Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge des Cephalums 15 mm</td>
<td>7</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Länge des Pedunculus 12.5 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An der Basis von Cirrus I ein Filamentanhang, was für den Genus Heteralepas auszeichnend ist. Hinsichtlich Cirrus V und VI gleicht diese Art eher der mit gleichlangen Rami versehenen Form Paralepas xenophorae als Paralepas intermedi, welch letztenannte Art eine beginnende Reduktion des inneren Rammus aufweist. Die Cirren der beiden erwähnten Arten sind, wie Annandale 1909 a angibt: „short and almost straight, thus showing an approximation to the Alepadine type, although neither is pelagic“. Die vorliegende Spezies scheint in der Reduktion nicht so weit gegangen zu sein, da die Cirren ziemlich kräftig, relativ lang und auch gebogen sind. Die Segmente verschnäler sich gegen die Basis zu und haben kräftigere Borsten im hinteren, oberen, als im vorderen Teil. An der Seite des Segmentes findet man einen Abbruch des Borstenkranzes.

Ein Vergleich mit Pilsbrys Figur 34, 1907 b von Paralepas percarinata zeigt, daß die Borstenbewaffnung der neuen Art kräftiger ist. Caudalanhang wie bei den erwähnten Arten lang, etwas länger als der lange Protopodit, mit ungefähr zehn Gliedern.

Fundort: Japan, Sagami, Misaki, Okinose; auf Molluskenschalen Juni 1914. S. Bock. U. M.

Familie Poecilasmatidae Annandale, 1909.

Subfam. Lepadinae (außer Lepas) Pilsbry, 1907 b.

Diagnose bei Annandale, 1909 a, Seite 64.

Genus Poecilasma Darwin, 1851.

Trilasmis Hinds, 1844.
Anatifia Gray, 1848.
Temnaspis Fischer, 1884.
Poecilasma Darwin, 1851 und späterer Verfasser.

Komplettierende Diagnose: Capitulum mit drei, fünf oder sieben Platten. Umbo auf Scuta und Carina basal. Carina erstreckt sich nicht zwischen die Terga; in ihrer ganzen Länge von gleicher Breite. Tergum

Verbreitung: Warme Meere. In größerer Tiefe.

Annandale 1909 a und Krüger 1911 a nehmen beide die zwei Subgenera *Poecilasma* und *Trilasmis* auf; der letztgenannte ist besonders durch das große Scutum und das Fehlen des Tergums ausgezeichnet. Der Subgenus *Temnaspis* wird also von diesen zwei Verfassern nicht mitgerechnet, auch gibt Pilsbry keine nähere Diagnose dafür; er erwähnt nur, daß das Scutum zweiteilig und die Cirren eigentümlich seien. Da ich Gelegenheit hatte, die meisten Arten von *Temnaspis* zu studieren, soll unten eine Diagnose dieses wohlabgegrenzten Subgenus geliefert werden.

Folgende Subgenera sind hier vertreten:

a) **Subgenus Poecilasma Darwin, 1851.**

Poecilasma (Poecilasma) Kaempferi Darwin, 1851.

(Textfig. 46.)

Poecilasma Kaempferi Darwin, 1851, Weltner, 1897 a, Griyel, 1905 a, 1906 a, 1912 b, Pilsbry, 1907 b, d.

Poecilasma aurantium Darwin, 1851.

Poecilasma dubium Hoek, 1907 a.

Poecilasma Kaempferi var. dubium Annandale, 1909 a, Krüger, 1911 a.

Poecilasma Kaempferi litum Pilsbry, 1907 b, Krüger, 1911 a.

Poecilasma inequaliteterale Pilsbry, 1907 b mit Varietät breve.

Komplettierende Diagnose: Capitulum mit fünf Platten, mehr oder weniger oval. Margo carinalis stärker gebogen als Margo occludens. Apex spitzig. Platten weiß oder orangefarben, etwas streifig, dicht sitzend. Scutum hat beim Umbo innere Zähne. Kiel vom Umbo zum Apex vor-

Das vorliegende Material aus Japan stimmt ziemlich gut mit der Beschreibung überein, die Darwin 1851, ebenfalls von japanischen Exemplaren, liefert. Krüger 1911a, stellt zwei japanische Varietäten der Art auf: nämlich dubium und litum. Letztere ist von Pilsbry, 1907b aus dem westlichen Atl. Ozean (Florida) beschrieben worden und wird von Annandale 1909a als wenig unterschieden angesehen. Pilsbry sagt 1907b, Seite 84: „No western Atlantic example I have seen agree entirely with the Japanese or eastern Atlantic forms, as defined by Darwin and Gruvel,“; weshalb
Krügers Bestimmung in diesem Fall als ziemlich unsicher angesehen werden dürfte. Die hier untersuchten Exemplare möchte ich in Annandales Race I einreihen, die folgendermaßen definiert wird: „A single vertical ridge on the scutum. Occludent margin of the scutum projecting very little beyond the vertical ridge, evenly curved; maximum length of scutum to maximum breadth about as 5 to 3. Carina of almost the same width throughout, when viewed lateraly. Habitat. — Japan and S. Pacific."

Diese Definition ist auf das vorliegende Material gut anwendbar. Wieweit Krügers Angabe richtig ist, daß sich auch die Varietät dubium in Japan vorfinde, ist gegenwärtig schwer zu entscheiden.

Capitulum war bei den hier untersuchten Exemplaren im unteren Teil angeschwollen. Asymmetrie herrschte hinsichtlich der Konvexität der
Seiten, was, wie Darwin hervorhebt, darauf beruht, wie das Tier befestigt ist.

Carina zeigt am abgestumpften Ende eine verschiedene Ausbildung der beiden Zähne. Der Zahn der konvexen Seite ist besser entwickelt als der der anderen.

Caudalanhang außerordentlich kurz, eingliedrig, wie schon von Darwin angegeben wurde.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>7.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3.5</td>
<td>1.7</td>
</tr>
<tr>
<td>9</td>
<td>5.5</td>
<td>6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Verbreitung (der typischen Formen): Japan, südlicher Stiller Ozean in größerer Tiefe.

Fundort: Japan, Kiuschin, Sato-no-misaki; auf Krabben: Pleistacanththa sancti-johannis Mizs, und Parhomola japonica Parisi. 275 m tief; 13./5. 1914. S. Bock. R. M. Miers.

b) Subgenus Glyptelasma Pilsbry, 1907.

Glyptelasma Pilsbry, 1907 b, unter Genus Megalasma, Annandale, 1916 b, unter Genus Poeclasma.

Poecilasma (Glyptelasma) carinatum Hoek, 1883.

Diagnose bei Hoek 1883, Seite 44.

Beschreibung ausführlich bei Hoek 1883, Seite 44 und 1907 a, Seite 5.

Von dieser weitverbreiteten Tiefseeform enthielt mein Material nur zwei Exemplare aus Japan.

<table>
<thead>
<tr>
<th>Größe in Millimetern:</th>
<th>Länge des Capitalum</th>
<th>Breite des Capitalum</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.5</td>
<td>2.5</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>2.5</td>
<td>3.5</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Findort: Sagami, Meeresjapan. 300-800m. 2. Bock, 1907.

Subgenus Temnaspis Pilsbry, 1907.

Die Anordnung der verschiedenen Arten würde mit Rücksicht auf die Borstenbewaffnung des Vorderrandes der Segmente folgende sein:

I. Borsten entlang des ganzen Vorderrandes: P. vagans und P. excavatum.

II. Borsten in der oberen Hälfte des Vorderrandes:

P. tridens.

III. Borsten in der oberen Ecke des Vorderrandes und in einer distal von der Mitte gelegenen Partie:

P. lenticula.

IV. Borsten hauptsächlichst in der oberen Ecke des Vorderrandes:

P. fissum und P. amygdaIum.

Hinsichtlich P. minutus fehlen Angaben über die Cirren; diese Art wird als P. lenticula nahestehend erwähnt.

Poecilasma (Temnaspis) lenticula C. W. Aurivillius, 1894.

(Textfig. 47, Taf. III a, 5.)

Poecilasma lenticula C. W. Aurivillius, 1894 b, Gruvel, 1905 a.

Poecilasma fissum Annandale (Hor Darwin), 1900 a, 1910 c (in parte).

Poecilasma fissum Hoek (Hor Darwin), 1907 a (in parte).

Komplettierende Diagnose: Capitulum spitziger und langgestreckter als bei P. amygdaIum C. W. Aurivillius. Das größere Segment des Scuntums mit kürzerem Basal- als Terghrand. Terghum dreimal so breit wie die Carina, Margo ocellulden bis zur Mantelöffnung reichend. Carina mit einem präumbonalen Teil, der schmabelartig und ventral eingesenkt, aber nicht breiter als der übrige Teil der Carina ist. Labrum mit ziemlich kräftigen,

Komplettierende Beschreibung: Da mir Material der beiden von Aurivillus aufgestellten Arten zur Verfügung stand und ich außerdem Gelegenheit hatte, Typenexemplare zu untersuchen, kann ich feststellen, daß Aurivillus' beide Arten deutlich unterschieden sind. (S. auch die Diskussion bei P. amygdalum.)

In ihrem Äußeren ist die vorliegende Art von dem rundlicheren P. amygdalum deutlich verschieden. Das Capitulum ist hier langgestreckter und dadurch nach oben zuzuspitziger. Eine Untersuchung der inneren Teile erwies auch, daß die beiden Arten durch die von Aurivillus hervorgehobenen Unterschiede getrennt sind. Wie Aurivillus, fand auch ich die beiden Arten nebeneinander sitzend vorkommend.

Capitulum. Die beiden Seiten fand ich bei allen Exemplaren gleich ausgebildet.

Scutum. Hinsichtlich des von Gruvel, 1905 a für die Arten P. amygdalum und P. fissum, jedoch nicht für P. lenticula in das Examinationsschema aufgenommenen inneren Zahnes des Scutums kann darauf hingewiesen werden, daß dieses Merkmal allzu unwesentlich ist, als daß es zur Unterscheidung dieser Arten Verwendung finden könnte. Übrigens gab die Untersuchung, daß P. lenticula einen gleichartigen, vorspringenden Zahn auf der Innenseite des Scutums trägt.

Im Folgenden sollen die bedeutenderen Charaktere besonders hervorgehoben werden. Wie die Originalbeschreibung angibt, wird das Tergum dieser Art etwas breiter, was damit zusammenhängt, daß das Capitulum nach oben stärker ausgezogen ist.

Pedunculus oft kürzer als die Hälfte des Capitulums. Farbe rotbraun. Chitinkörner an der Oberfläche. Oft geringelt, was auf einem Kontraktionszustand beruht.

Größe in Millimetern:

<table>
<thead>
<tr>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>3</td>
<td>1.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Die Größe stimmt mit der des Typenmaterials, das als größte Gesamtlänge 65 mm aufweist, gut überein. Die Art scheint keine bedeutendere Größe zu erreichen, wie es auch mit *P. amygdalum* der Fall ist.

Mundteile bisher nur kurz beschrieben, weshalb eine Vervollständigung gegeben werden kann.

Labrum: Der konkave Teil mit kräftigen, spitzigen Zähnen, die nicht überall miteinander zusammenhängen.
Palpus konisch, stumpf, mit Borsten entlang des einen Randes und an der Spitze, ziemlich kurz.

I. Maxille: Mit tiefem Einschnitt im oberen Teil und einer vorspringenden unteren Partie, die kräftige Stacheln trägt. Ich glaube, daß man, nach den Ergebnissen der Untersuchung mehrerer Exemplare der Arten *P. amygdalum, P. lenticula* und *P. vagnans* zu urteilen, keinen wesentlichen Unterschied zwischen den Mundteilen der verschiedenen Arten finden kann.

II. Maxille mit abgerundetem Vorderrand, der, wie der Oberrand, haarförmige Borsten trägt.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammlung: 6 mm lang</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Typensammlung: 6.5 mm lang</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Abgesehen von einer kleineren individuellen Variation herrscht hinsichtlich der Segmentanzahl ziemlich gute Übereinstimmung.

Caudalanhang: bei dieser Art etwas länger als der VI. Protopodit, mit einem Bündel Haarborsten an der Spitze und Borstengruppen längs des Außenrandes. Der Anhang ist somit länger als der der größeren Art *P. amygdalum*, was beweist, daß die vorliegende Art nicht jüngere Individuen von *P. amygdalum* vorstellt, da der Anhang bei solchen kleineren Tieren nicht größer sein kann als bei den älteren Individuen.

Penis dick und spitzig; mit Borsten am Ende.

Alter Fundort. Javasee, bei der Insel Nordwachter.

Neuer Fundort. Amborovy, Madagaskar; auf einer Languste. 20./5. 1912. W. Kaudern. R. M.

Poecilasma amygdalum C. W. Aurivillius, 1894.

(Textfig. 48 a, b, c.)

Poecilasma amygdalum C. W. Aurivillius, 1894 b, Grivel, 1905 a, Annandale, 1905.

Poecilasma fissum Høek, (nom. Darwin), 1907 a (in parte).

Poecilasma fissum Annandale, (nom. Darwin), 1909 a, 1910 c (in parte).

Komplettierende Beschreibung: Da ich auch durch Vergleich mit Typenexemplaren konstatieren konnte, daß diese Art deutlich unterschieden ist, sollen die auszeichnenden Charaktere hier nochmals hervorgehoben werden.

Capitulum wurde als mandelförmig, weniger angeschwollen als bei *P. vagans* angegeben, was sich auch als richtig erwies. Das Tergum wird bei älteren Tieren etwas trapezförmig. Als Unterschied von *P. fissum* Darwin, welche Art nicht vollständig beschrieben ist, wird die Form des Capitulums hervorgehoben; dieses hat einen stärker konvexen Margo ocludens und einen weniger konvexen Margo carinalis, wodurch sie elliptischer wird.

Mundteile von Aurivillius nicht vollständig beschrieben.

Labrum: Der konkave Teil zeigt bei mehreren Exemplaren spitzige Zähne, die spärlich sitzen und somit an der Basis nicht ineinander übergehen.

Palpus kurz, spitziger als bei *P. lenticula*.

Caudalanhang kürzer als der VI. Protopodit, mit Borsten an der Spitze und in Gruppen entlang der Dorsalseite.

Penis ziemlich kurz und dick, mit einem Bündel Haare an der Spitze.

Poecilasma amygdalum madagascariense n. subsp.

(Textfig. 48 d—g, Taf. III,* 6.)

Das hier untersuchte Material weicht von Typenexemplaren in einigen Charakteren ab, weshalb ich diese Tiere aus Madagaskar als eine besondere Subspecies führe.

Capitulum war wie das der Hauptform mandelförmig. Im übrigen waren alle diese Exemplare etwas kleiner. Pedunculus auch hier von rötlichgelber Farbe und quergeringelt.

Größe in Millimetern:

<table>
<thead>
<tr>
<th></th>
<th>Länge des Capitulums</th>
<th>Breite des Capitulums</th>
<th>Länge des Pedunculus</th>
<th>Breite des Pedunculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammlung</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>2,5</td>
</tr>
<tr>
<td>Typensammlung</td>
<td>8,5</td>
<td>6</td>
<td>6</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Die Borstenanordnung der Cirren stimmte mit der der Hauptform überein.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totallänge 12 mm</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Totallänge 8 mm</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Fundort: Amborovy, Madagaskar; zusammen mit *P. lenticula* auf einer Languste. 20./5. 1912. W. Kaudern. R. M.

Diskussion: Wie schon oben erwähnt wurde, stellte C. W. Aurivillius 1894 b die drei Arten: *P. amygdalum*, *P. lenticula* und *P. vagans* auf. Eine Untersuchung des Typenmaterials ergab, daß diese Arten deutlich voneinander getrennt sind. Und auch mein Material, das zwei dieser

Poecilasma amygdalum madagascariense C. W. Auriv.

d Labrum mit Palpi, Vergr. 53 mal. e Mandibel, Vergr. 91’5 mal. f I. Maxille, Vergr. 161 mal. g II. Maxille, Vergr. 91’5 mal.

Arten enthielt, bewies das Gleiche. Hoek 1907a glaubt davon wenigstens P. amygdalum C. W. Aurivillius zu P. fissum Darwin rechnen zu können. Er sagt, 1851, auf Seite 3: „I think also that it is doubtless whether
P. amygdalum Auriv. und P. lenticula Auriv. are really different from another and from P. fission."

Annandale 1909 a rechnet sowohl P. amygdalum, als auch P. lenticula zu P. fission Darwin, und 1910 c reiht er auch P. vagans darunter ein. Er sagt 1910 e, Seite 216: „The synonymy proposed in the following notes may seem extravagant to some students of the cirripedia; I can only excuse it by stating the fact that I have examined large numbers of specimens in each case, in most cases from widely separated localities.“ Trotz dieser Behauptung Annandales findet man Aurivillius’ drei Arten deutlich unterschieden. Aurivillius hebt selbst hervor, daß er bei oberflächlichem Betrachten vermutete, P. lenticula sei nur ein jüngeres Stadium von P. amygdalum. Die beiden Arten saßen nämlich miteinander auf Palinurus. Auch das mir vorliegende Material zeigte beide Arten auf der gleichen Languste.

P. lenticula und P. amygdalum werden, wie es oben und in Aurivillius’ Beschreibung geschieht, durch mehrere Merkmale getrennt. Vor allem ihrem Äußeren nach, indem die erstgenannte Art ein stärker langgestrecktes und spitziges Capitulum besitzt als die andere, bei welcher es abgerundeter ist. Die wesentlichste Verschiedenheit liegt aber in der Borstenbewaffnung der längeren Cirren: P. amygdalum hat relativ kurze Borsten, distal in der vorderen und hinteren Ecke der Segmente ange- sammelt, die hinteren mehr stachelartig. P. lenticula trägt zwar ebenfalls ein Borstenbündel in der distalen hinteren Ecke des Segmentes, doch be- setzt der Vorderrand lange Borsten nicht nur in der oberen Ecke, sondern auch auf einer distal von seiner Mitte gelegenen Partie. Leider hat sich in Aurivillius’ Figuren der Borstenbewaffnung von P. lenticula ein Fehler eingeschlichen, was auch schon Hoek vermutet. In diesem Zusammenhang sagt Hoek (1907 a, Seite 10) über Aurivillius’ Beschreibung: „But as he points out that the difference in the arrangement of the species is the most essential, one cannot help thinking that after all the reason for separating two forms of Poecilasma as different species which closely resemble one another in other regards and live together on the carapax of the same specimen of Palinurus, is not a very strong one.“ Daß die Unterschei- dungsmerkmale sicher sind, bewies mir die Untersuchung zahlreicher Exem- plare des Typenmaterials und die mir vorliegende Sammlung. Übrigens kann P. lenticula schon deshalb keine Jugendform von P. amygdalum sein, weil auch junge Individuen der beiden Arten deutlich durch die Form des Capitulums unterschieden sind.

Auch P. vagans fand ich bei der Untersuchung von Typenexemplaren deutlich von den vorhergehenden Arten unterschieden, weshalb hier eine Beschreibung geliefert werden soll.

Poecilasma vagans C. W. Aurivillius, 1894.

Poecilasma fissum (non Darwin) Annandale, 1910 c.

Diskussion: Obwohl ich kein neues Material zur Verfügung hatte, nehme ich doch auch diese Art hier auf, da sie ebenfalls wie oben erwähnt, von Annandale 1910 c zu P. fissum gerechnet wurde. Die Untersuchung der Typenexemplare ergab, daß diese Art deutlich von den übrigen getrennt ist. Schon dem Äußeren nach unterscheidet sie sich durch das nach unten zu stärker angeschwollene Capitulum und die Form des Scutums, das einen stärker konkaven Margo basalis besitzt als die übrigen Arten. Die Mundteile zeigen keine bedeutenderen Verschiedenheiten von P. amygd-
dalum, nur daß der Vorderrand der II. Maxille mehr gerade ist, was an das Subgenus Poecilasma erinnert.

Wie schon Aurivillius hervorhebt, besteht der wesentlichste Unterschied in der Borstenbewaffnung der längeren Cirren. Die Segmente tragen Borsten in der hinteren oberen Ecke und über den ganzen Vorderrand (6—7 Paar) zerstreut. Auch hierin erinnert die Art an die ursprünglichen, mit fünf Platten versehenen Formen.

Caudalanhang etwas länger als das proximale Segment des Protopoditen. Nach oben zu einseitig abgerundet, mit Borsten an diesem Teil.

Cirren: Hinsichtlich der Segmentanzahl kann ein Vergleich mit P. amygdalum gemacht werden.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. amygdalum:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge des Capitulums 1:5 mm</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Länge des Pedunculus 3 mm</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>P. vagans:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge des Capitulums 1:5 mm</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Länge des Pedunculus 2:5 mm</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

Die beiden untersuchten, ungefähr gleich großen Individuen tragen an den längeren Cirren ungefähr gleich viele Segmente. Die beiden I. Cirren sind aber doch verschieden, denn Cirrus I von P. vagans hat bedeutend weniger Segmente und ist deshalb auch kürzer als der von P. amygdalum; nach Aurivillius sei er von halber Länge des Cirrus II.

Das Gesagte dürfte hinreichen, zu zeigen, daß man beim Aufstellen von Synonymen sehr vorsichtig sein muß. Vor allem sollte man, wie es hier geschah, Typenexemplare untersuchen.

Alter Fundort: Ostindien? U. M.

Genus Octolasmis Gray, 1825.

Octolasmis Gray, 1825.
Heptolasmis Leach, 1825.
Paradolepas Mac Donald, 1869.
Trichelaspis Stebbing, 1894.
Octolasmis Pilshy, 1907 b, 1911 b, 1911 c, Stebbing, 1910. Krüger, 1911 a.

Diagnose bei Krüger 1911 a, Seite 39.
Verbreitung: Warme und gemäßigte Meere.

Octolasmis Nierstraszi (Hoek, 1907.)

Dichelaspis Nierstraszi Hoek, 1907 a.

Diagnose bei Hoek, 1907 a, Seite 21.

Alte Fundorte: Malaiischer Archipel, verschiedene Stellen. 9—112 m tief.
Neuer Fundort: Bonininseln (Ogasawara), östlich von Chichijima. 135 m tief. 1/8. 1914. S. Bock. U. M.

Unterordnung Verrucomorpha Pilsbry, 1916.

Asymmetrical früherer Verfasser.

Familie Verrucidae Darwin, 1854.

Clisiidae Leach, 1825.
Verrucidae Darwin, 1854, Graysel, 1903, 1905 a, Pilsbry, 1916.

Genus Verruca Schumacher, 1817.

Verruca Schumacher, 1817.
Clisia Leach, 1817.
Creusia Lamarck, 1818.
Ochthosia Ransani, 1817.
Clisia Leach, 1824, 1825.
Clitia Sowerby, 1827.
Lepas et Balanus Auctorum.
Verruca Gray, 1825, Darwin, 1854 und späterer Verfasser.

Hinsichtlich der Terminologie der Platten folge ich Pilsbry 1916.

Pilsbry meint, daß sich in den Mundteilen der verschiedenen Arten nur geringere Differenzen vorfinden. Doch konnte ich eine Reihe Verschiedenheiten finden, die sowohl aus Hoeks Figuren 1913, als auch aus der geringen Anzahl der mir zur Verfügung stehenden Arten hervorgeht.
Ich nenne z. B. die Verschiedenheit in der II. Maxille zwischen *Verruca strömia* und *Verruca nexa multiradiata* n. subsp.

Verbreitung: Weit verbreitet in tropischen, gemäßigten und kalten Meeren, gewöhnlich in größerer Tiefe.

Verruca strömia (O. F. Müller, 1776).

(Textfig. 49.)

Lepas strömia O. F. Müller, 1776, 1789.
Lepas striata Pennant, 1777.
Lepas verruca Spengler, 1790.
Lepas verruca et strömia Gmelin, 1789.
Balanus verruca Bruguieré, 1789.
Balanus intertextus Pulteney, 1799.
Lepas striatus Montagu, 1803.
Lepas verruca Wood, 1815.
Verruca strömii Schumacher, 1817.
Creusia strömia et verruca Lamarck, 1818.
Ochtosia stroemia Ranzani, 1820.
Clisia striata Leach, 1824.
Clitia Verruca G. B. Sowerby.
Verruca strömii J. E. Gray, 1825.

Diese Art ist schon früher, von Darwin u. a., ausführlich besprochen worden und ist auch leicht von den übrigen *Verruca*-Arten zu unterscheiden, weshalb wenig Ergänzungen zu machen sind.

Der Vollständigkeit halber sollen die Mundteile abgebildet werden.

Labrum nicht angeschwollen, gerade oder konkav, mit bis acht deutlichen Zähnen, die spärlich in der Mitte sitzen.

Palpus spitzig, konisch, Oberrand gerade, Borsten entlang des Oberrandes und an der Spitze.

II. Maxille ziemlich kurz und breit, zweilappig, mit deutlichem Einschnitt auf der Mitte. Vorderrand des oberen und unteren Lobus stark konvex, mit Borsten.

Hinsichtlich der Cirren will ich mich bei dieser wohlgetrennten und gewöhnlichen Art ganz kurz fassen. Von Interesse ist, daß Cirrus I bis III

sehr verschieden lange Rami besitzen. Cirrus I nach PILSBRY „slightly unequal“, Cirrus II und III mit einem Ramus „one half the other“.

Cirrus I mit ziemlich ungleich langen Rami. Cirrus II und III haben den einen Ramus bedeutend kleiner als die Hälfte des anderen, weshalb PILSBRY'S Gradierungen der verschiedenen Arten: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$ usw. nicht allzu streng genommen werden dürfen.
Fundort: Bohuslän, Gullmarfjord, Väderöarna, 30—60 m tief. C. A. Nilsson-Cantell.

Textfig. 50. Verruca nexa multiradiata n. subsp.

Verruca nexa multiradiata n. subsp.
(Textfig. 50.)

Beschreibung: Diese hier neu aufgestellte Subspecies unterscheidet sich von der von Darwin, 1854 und Pilshry, 1916 behandelten Hauptform in einigen geringeren Merkmalen, ungefähr wie *Veruca calotheca Heteropoma Pilshry* von *Veruca calotheca* abweicht. Im Äußeren herrscht Übereinstimmung mit Darwins Figuren.

Das mit drei Articularkielen versehene bewegliche Tergum wie bei der Hauptform. Äußere Hälfte der Platte transversal streifig.

Det patellaartige Rostrum hat die Art mit zwei anderen, nämlich *V. Koehleri Guvel*, 1909 und *V. intexta Pilshry*, 1912 gemeinsam, nur daß *V. ne.ca* durch eingefaltete Basalteile der Parietes unterschieden ist.

Größe: Carino-rostraler Diameter 5 mm.

Mundteile: Da für die Hauptart eine Beschreibung der Mundteile fehlt, kann hier eine Ergänzung gemacht werden. Es ist nicht richtig, daß wir, wie Pilshry sagt, bei *Veruca* keine Rücksicht auf die Mundteile der verschiedenen Arten zu nehmen brauchten, denn es finden sich trotz der Gleichförmigkeit der Ausbildung doch einige Verschiedenheiten.

Labrum gerade oder schwach konkav, mit zerstreuten kleinen Zähnen.

Palpus konisch.

Mandibel mit drei Zähnen, der untere Teil des Vorderrandes von spitzigen Stacheln grob pektiniert.

I. Maxille mit Einschnitt im oberen Teil und kleineren Borsten. Untere Partie vorspringend.

II. Maxille nicht zweilappig, mit schwach konkavem, borstentragendem Vorderrand. Längs des dorsalen Teiles lange Borsten. Gewöhnlich wird die II. Maxille von *Veruca* als zweilappig angegeben, wovon somit diese Art abweicht.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammlung: Carino-rostraler Diam. 5 mm</td>
<td>12 13 10 15 19 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilshrys Angabe für V. ne.ca</td>
<td>11 12 10 15 — —</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darwins Angabe für V. ne.ca</td>
<td>11 12 10 15 16 18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Segmentanzahl wie auch das Verhältnis zwischen den Längen der Rami von Cirrus I bis III stimmen ziemlich gut mit der Hauptform

Caudalanhänge lang, wie *Darwin* und *Pilsbry* beschreiben, ungefähr halb so lang wie Cirrus VI.

Verbreitung von *V. nexa*: Westindien.

Fundort: Bartelemy, Westindien. Auf einer Spongie. 366 m tief. M. Goes. R. M.

Diskussion: Obwohl diese Exemplare mit *V. nexa* *Darwin* in den meisten Charakteren ziemlich gut übereinstimmen, jedoch hauptsächlichst hinsichtlich der Längskiele des beweglichen Scutums abweichen, die sowohl von *Darwin*, als auch von *Pilsbry* in der Anzahl zwei angegeben, bei allen untersuchten Exemplaren aber vier sind, glaube ich diese Tiere als eine besondere Form aufnehmen zu müssen. Weitere Funde werden ergeben, ob diese Abweichung konstant oder inkonstant ist.

Unterordnung Balanomorpha *Pilsbry*, 1916.

Symmetrica früherer Verfasser.

Diagnose: bei *Pilsbry*, 1916, Seite 14.

Familie Chthamalidae *Darwin*, 1854.

Subfamilie *Chthamalinae* *Darwin*, 1854.

Familie Octomeridae +

Subfamilie *Chthamalidae* *Pilsbry*, 1916.

Diese Familie zeigt in vielen Hinsichten primitive Charaktere, was schon *Darwin* und *Pilsbry* hervorhoben. Gewisse Übereinstimmungen mit *Verrucidae* und *Lepadomorpha* hinsichtlich der Mundteile und der bei gewissen Formen vorkommenden Caudalanhänge. Die Familie ist hier von den Genera *Chthamalus* und *Octomeris* vertreten.

Genus Chthamalus *Ranzani*, 1817.

Chthamalus *Ranzani*, 1817, 1818, *Gray*, 1825.

Lepas
verschiedener älterer Verfasser.
Euraphia Conrad, 1837.
Chthamalus Darwin, 1854. und spätere Verfasser.

Verbreitung: In der Littoralregion aller Meere.

Diskussion: Darwin rechnet zu dieser Gattung acht Arten; 1883 beschreibt Hoek eine neue Art und 1916 wird die Anzahl der Arten durch Pilshry, der diese Gattung einem gründlicheren Studium unterzog, um acht neue Species und drei neue Subspecies vergrößert. Trotzdem der letztgenannte Verfasser sehr gute Beschreibungen und Abbildungen lieferte, konnte er über die mit Rücksicht auf Mundteile und Cirren durchzuführende Gruppierung doch nur einige Andeutungen geben. Er sagt darüber, 1916, Seite 295: „The mouthparts and cirri of Chthamalus deserve a much more extended examination than I have been able to find time for."

Es können nach den Mandibeln zwei große Hauptgruppen unterschieden werden:

1. Chth. stellatus-Gruppe hauptsächlichst durch die Form der Mandibel (s. I. im Schema) und außerdem durch das Vorkommen pektiniert der Borsten an Cirrus II ausgezeichnet.

II. Chth. Hembeli-Gruppe ausgezeichnet durch die Form der Mandibel (s. II.) und das Fehlen von pektinierten Borsten an Cirrus II (oder sind nur sehr unbedeutende vorhanden).

Die übrige Einteilung dürfte aus dem Schema hervorgehen, in das außer äußeren auch einige innere Charaktere mit aufgenommen wurden. Gruvels Einteilung verwendet als Hauptgruppierung das Aussehen der

Chthamalus. Examinationsschema.

A Die Cristae für den Musculus depressor auf dem Tergum nicht zu einer Platte verscbmolzen. Untere Partie des Vorderrandes der Mandibel pektiniert, ohne zerstreute Zähne.

1 Die Opercularplatten der beiden Seiten in Form und Größe verschieden:

* Chth. anisopoma Pilsbry, 1916.

2 Die Opercularplatten der beiden Seiten in Form und Größe gleich.

a Innere Teile dunkelviolett ("violet black color"), Suturen einfach. Scutum mit niedrigem Articularkiel und ohne Cristae für die Muskeln. Tergum schmal, mit kurzem, gerundetem Sporn, von der basiscutalen Ecke nicht getrennt.

* Chth. imperatrix Pilsbry, 1916.

b Innere Teile leicht oder schwach dunkel, nicht purpurfarben oder violett.

* Adductorkiel des Scutums deutlich, mehr oder weniger kräftig entwickelt.

* Chth. fissus Darwin, 1854.
Breite des Tergums ungefähr \(\frac{3}{4} \) der Länge, nicht keulenartig. Margo tergalis des Scutums länger, ungefähr \(\frac{2}{3} \) der Länge des Margo basalis. Adductorkiel lang und wohl ausgebildet. Suturen einfach.

Cith. dalli PILSBRY, 1916.

Cith. challenger HOEK, 1883.

Carinaler Lobus des Tergums nicht spitzig, wohlentwickelt, mit mehreren Cristae.

Rami von Cirrus III gleich lang, normal ausgebildet. Schale mit Längsfalten oder corrodiert.

Margo carinalis des Tergums schwach konvex. Suturen undeutlich, nicht kreneliert.

Cith. stellatus (POLI, 1795)

Margo carinalis des Tergums stark konvex. Suturen kreneliert, mit deutlichen Zähnen.

Cith. dentatus KRAUSS, 1848.

Cith. antennatus DARWIN, 1854.

Carinaler Lobus des Tergums schmal, zugespitzt, mit wenigen Cristae. Rami auf Cirrus III gleich lang.

Cith. cirratus DARWIN, 1854.

Tergum gleichförmig dick, oben und unten ungefähr gleich weit. Tergum ohne Längsrinne.

Schale mit Längsfalten. Margo tergalis des Scutums gleich lang wie Margo basalis.

Cith. moro PILSBRY, 1916.

Schale glatt oder mit unbedeutenden Längsfalten. Margo tergalis des Scutums kürzer als Margo basalis.

Cith. fragilis DARWIN, 1854.

Tergum mit Längsrinne an der Außenseite.

Cith. panamensis PILSBRY, 1916.

Chth. scabrosus Darwin, 1854.

Mandibel mit drei Zähnen und einer pektinierten unteren Ecke, mit den größten Stacheln am Ende, nach oben und unten kleiner werdende. Pektinierte Borsten am Ende, nach oben und unten kleiner werdende. Mandibel mit drei Zähnen und einer pektinierten unteren Ecke, mit den größten Stacheln am Ende, nach oben und unten kleiner werdende. Pektinierte Borsten am Ende, nach oben und unten kleiner werdende.

A Ohne Caudalanhänge.

Chth. Hembeli (Conrad, 1837).

2 Mandibel ohne Pektinierung zwischen den Zähnen. Kleine Formen (5—15 mm).

a Zwischen Scutum und Tergum eine Höhlung, unten geschlossen, Öffnung oben. Tergum dadurch mit einer Grube, wie auch Scutum, mit einer unter dem Articularkiel sitzenden Lamelle versehen, die die Grube des Tergums bedeckt (Textfig. 56).

Chth. Appellöfi n. sp.

b Tergum und Scutum normal ausgebildet, ohne Höhlung zwischen den Platten.

Chth. intertextus Darwin, 1854.

** Tergum und Scutum nicht verwachsen. Parietes nicht eingefaltet. Suturen einfach.

B Mit langen Caudalanhängen. Mandibeln ohne kleinere Stacheln zwischen den Zähnen.

Chth. caudatus Pilsbry, 1916.
I. *Cirripedes stellatus*-Gruppe.

Cirripedes Challengeri Hoek, 1883.

(Textfig. 51 c, d.)

Cirripedes Challengeri Hoek, 1883, Weltner, 1897 a, Gravel, 1903, 1905 a, Krüger, 1911 a, Pilsbry, 1916.

(*?* C. *stellatus* Krüger, 1911 a.

(*?* C. *Challengeri nipponensis* Pilsbry, 1916.

Komplettierende Beschreibung: Diese Art scheint keine größeren Dimensionen zu erreichen. Pilsbrys Exemplare messen bis 7-6 mm, die hier...

Mundteile: Labrum mit breitem Einschnitt,haarig, mit spärlichen Zähnen.

Mandibel: Gleich der von Chth. stellatus.

I. Maxille wie bei Pilsbry, mit einem deutlichen Einschnitt.

II. Maxille zweilappig, mit deutlichem mittleren Einschnitt.

Verbreitung: Japanische und malayische Meere.

Fundort: Japan, Sagami, Misaki. Auf *Pollicipes mitella*. 2—3 m tief. April 1914. S. BOCK. R. M.

Neuer Fundort: Südküste Javas, Wijnkoopsbai. Auf Strandklippen. C. W. AURIVILLIUS, 1891. R. M.

Chthamalus stellatus stellatus (POLI, 1795).

Chthamalus stellatus communis DARWIN, 1854. WETTEN, 1897 a, GRUVEL, 1903, 1905 a, KRÜGER, 1911 a, 1914, HOKK, 1913, PILSBRY, 1916.

Beschreibung bei DARWIN, 1854, Seite 455, und PILSBRY, 1916, Seite 302.

Komplettierende Beschreibung: PILSBRY nimmt die Bucht von Neapel als typisches Lokal dieser Form an. Die Übereinstimmung zwischen meinen aus Ägypten stammenden Mittelmeer-Exemplaren und PILSBrys ist hinsichtlich der Schale und der Opercularplatten vollständig, weshalb ich auf PILSBRYS Figuren 1, 1 a und 1 b auf Pl. 71, 1916, verweise.
Mundteile: Labrum mit stark eingebogener Kaufläche, mit Haaren und Zähnen.

Palpus, Mandibel und I. Maxille wie bei PILSBRY.
II. Maxille zweilappig, von gewöhnlichem Aussehen.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 9 mm</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>PILSBRYs Angaben . . .</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DARWINS Angaben . . .</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Verbreitung: Mittelmeer, Madeira, Azoren, Malaiischer Archipel.
Neue Fundorte: Port Said, Ägypten, 28./1. 1899. C. W. AURIVILLIUS. R. M.
Mendanao, Gasparsund, Juli 1891. C. W. AURIVILLIUS. U. M.

Chthamalus dentatus Krauss, 1848.
(Textfig. 52.)

Beschreibung bei DARWIN, 1854, Seite 463.

Textfig. 52. Chthamalus dentatus, Krauss.

Zool. Bidrag, Upsala, Bd. 7.
Tergum mit deutlichem Artikularkiel und stark gebogenem Margo carinalis. Cristae für den Musculus depressor auf einer vorspringenden Partie.

Mundteile von Darwin unvollständig beschrieben.

Labrum mit einem schwachen, breiten Einschnitt auf der Mitte, gezähnt und borstentragend.

Palpus gleichmäßig dick, mit deutlichem Vorderrand, kürzere Borsten entlang des Oberrandes, längere entlang des Vorder- und Unterrandes.

II. Maxille vorne konkav, mit einem breiten, borstenlosen Einschnitt in der Mitte.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 8 mm</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 5.5 mm</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Verbreitung: Küsten Afrikas von der Goldküste, um das Kap der guten Hoffnung bis zur Bucht von Aden, Madagaskar.

Chthamalus antennatus Darwin, 1854.

(Textfig. 53.)

Chthamalus antennatus Darwin, 1854, Weltner, 1897 a, Gravel, 1903, 1905 a, 1912 b, Brock, 1916 a.

Komplettierende Diagnose: Schale konisch, gewöhnlich glatt, von weißer bis fleischroter Farbe. Suturen deutlich, nicht gezähnt. Radien

![Diagrams of Chthamalus antennatus](image)

Textfig. 53. Chthamalus antennatus. D.

Seit Darwin 1854, Seite 460 nicht näher beschrieben, weshalb einige Ergänzungen geliefert werden können.

Hinsichtlich der Opercularplatten (die nach Darwin jenen von Chth. stellatus gleichen) kann hervorgehoben werden, daß das Tergum ziemlich breit, der Form nach mit Pilsbry's Fig. 1a, Pl. 71, 1916 von Chth. stellatus übereinstimmt. Scutum etwas mehr transversal verlängert, mit geradem Margo basalis. Ausnahme für Musculus depressor lateralis und adductor vorhanden. Adductorfehlt oder ist unbedeutend entwickelt. Der Articularkiel weniger hervortretend als der der nahestehenden Art Chth. Challenger.

Mundteile vorher nur unvollständig beschrieben.
Labrum in der Mitte ziemlich seicht eingebuchtet, gezähnt und haarig.

II. Maxille deutlich zweilappig, mit Einschnitt in der Mitte.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 6-5 mm</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 4-7 mm</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Darwin's Angaben</td>
<td>6</td>
<td>6</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>53</td>
</tr>
</tbody>
</table>

Verbreitung: Australien. (Magalhaens-Straße, Patagonien. Grivel, 1912 b.)

Neuer Fundort: Port Jackson, in der Brandung, Eugenic-Expedition, 1851—1853. U. M.

Chthamalus scabrosus Darwin, 1854.

(Textfig. 54.)

Chthamalus scabrosus Darwin, 1854, Weltner, 1895, 1897 a, 1898, Grivel, 1903, 1905 a, 1912 b, Pilsbry, 1916.

Beschreibung bei Darwin 1854, Seite 468 und Pilsbry 1916, Seite 323.

DARWIN angibt, immer deutlich, von alternierenden Falten gebildet. Hinsichtlich der äußeren Teile verweise ich im übrigen auf DARWIN und PILSBRY.

Mundteile nach DARWIN nicht mehr beschrieben. Hier werden Figuren davon gegeben.

Palpus wie bei Clth. stellatus langgestreckt, mit abgerundetem Vorderrand, der lange Borsten trägt. Oberrand mit kürzeren Borsten.

Mandibel von für die Art charakteristischem Aussehen. Darwin sagt darüber nur auf Seite 469: „the mandibles have either four or five graduated teeth, the lower ones of which are plainly double laterally“. Man findet hier auf dem Vorderrand bis zu zehn Zähne, von denen die vier obersten kräftig sind. Die darunter sitzenden sind kleiner und nehmen an Größe ab. Diese untere Partie ist gewöhnlich auch pektiniert. Die auf der Mitte des Vorderrandes sitzenden Zähne sind doppelt.

I. Maxille. Das Aussehen wird von Darwin, Seite 469 treffend beschrieben: „the maxillae have a very sinous edge“. Der sonst gewöhnliche Einschnitt im oberen Teil fehlt, dagegen ist in diesem Teil eine breitere, eingebogene, mit kleineren Stacheln versehene Partie vorhanden. Auf der Mitte kräftige Stacheln. Untere abgerundete Ecke mit zahlreichen kleinen Stacheln.

II. Maxille zweilappig. Mittlerer Einschnitt ziemlich breit, ohne Borsten. Borsten darüber und darunter am Vorderrand wie auch am Oberrand.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 9 mm</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 7,5 mm</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>—</td>
</tr>
</tbody>
</table>

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr.</th>
<th>Breite</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diam.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>9,5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Port Louis. Auf Klippen, in der Ebbregion. 23./7. 1902. Schwedische Südpolexpedition 1901—1903. R. M.

II. *Chthamonalus Hembeli*-Gruppe.

Chthamonalus Hembeli (CONRAD, 1837).

(Textfig. 55.)

Euraphia Hembeli CONRAD, 1837.
Chthamonalus hembeli DARWIN, 1854. Weltner, 1897 a.
Chthamonalus hembeli GRUBE, 1905 a.
Chthamonalus hembeli PILSBRY, 1916.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr.</th>
<th>Lateraler</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diam.</td>
<td>Diam.</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>

I. Maxille wie bei PILSBERY.

II. Maxille wurde bisher noch nicht beschrieben. Sie ist der Form nach abgerundet, der Vorderrand gerade, mit zusammenhängenden, ziemlich kurzen Borsten. Längere Borsten längs der Dorsalseite.

Es kann hier ein Vergleich der Segmentanzahl der Cirren gegeben werden.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 53 mm</td>
<td>1</td>
<td>11</td>
<td>10</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Lateraler Diam. 31 mm</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 25 mm</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Lateraler Diam. 20 mm</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>19</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>PILSBERRY Exemplar . . .</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>17</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

Neue Fundorte: Westküste Sumatras, 1891, C. W. AURIVILLIUS. Java, 1899, C. W. AURIVILLIUS, R. M.

Verbreitung: Sandwich-Inseln, Sunda-Inseln. Von CONRAD zuerst aus Kalifornien beschrieben, was aber von PILSBERY als „incorrect“ bezeichnet wird. WEITNER nimmt auch Japan als Fundort auf. Diese Art scheint, da nur wenige Fundorte bekannt sind, ziemlich selten zu sein.

Chthamalus Appellöfi n. sp.

(Textfig. 56, Tafel III. ° 7.)

Gekrieden-Studien. 293

Textfig. 56. Chthamalus Appelgj. n. sp.
a Palpus, Vergr. 283 mal. b, Mandibel, Vergr. 270 mal. c I Maxille, Vergr. 457 mal. d II. Maxille, Vergr. 283 mal. e Rechtes Scutum, Innenseite, Vergr. 25 mal, f Außenseite, Vergr. 23 mal. g Rechtes Tergum, Außenseite, Vergr. 23 mal, h Innenseite, Vergr. 23 mal.
Ecke. I. Maxille mit durch zwei Einschnitte in drei Gruppen aufgeteilten Stacheln. II. Maxille mit einem schwachen Einschnitt auf dem Vorderrand.

Die Art ist besonders durch die Opercularplatten ausgezeichnet, die von jenen aller bekannten Chthamalus-Arten dadurch abweichen, daß an der Grenze zwischen dem jederseitigen Scutum und Tergum eine runde Öffnung vorhanden ist, die in einen Hohlraum führt, führt, der nach unten zu aber in keiner Weise mit der Mantelhöhle in Verbindung steht. Durch diese Höhle erhalten Tergum und Scutum ein abweichendes Aussehen, das die Art von den übrigen deutlich unterscheidet.

Mundteile: Labrum deutlich halbkreisförmig eingebogen, mit deutlichen spitzigen Zähnen und Haaren.

Palpus keulenförmig, mit ziemlich kurzen, gerade, borstentragendem Oberrand und undeutlichem Vorderrand, der längere Borsten besitzt.

Mandibel mit drei Zähnen und einer pektinierten unteren Ecke.

I. **Maxille** mit durch zwei Einschnitte in drei Gruppen aufgeteilten Stacheln am Vorderrand. Die Stacheln der obersten Gruppe am größten, die der untersten am kleinsten.

II. **Maxille** mit schwach konkavem Vorderrand, der einen schwachen borstenlosen Einschnitt trägt.
Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 4 mm</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 6.5 mm</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.5</td>
</tr>
<tr>
<td>6.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Diese neue *Chthamalus*-Art unterscheidet sich von den übrigen durch die Form der Opercularplatten. Hinsichtlich der Mandibeln schließt sie sich an die II. *Chthamalus*-Gruppe an.

Chthamalus Withersi PILSBRY, 1916.

(Textfig. 51a, b.)

Chthamalus Withersi PILSBRY, 1916.

Ausführlich beschrieben von PILSBRY 1916, Seite 312.

Komplettierende Beschreibung: Einige kleinere, aus Java stammende Exemplare, dieser nur einmal vorher gefundenen Art hatten die von PILSBRY abgebildete regelmäßige Form. Farbe braun. Ältere Individuen, zeigten eine unregelmäßige Form. Bei diesen größeren Tieren konnte der untere Teil der Platten in Kiele aufgeteilt sein.
In Scutum und Tergum herrscht Übereinstimmung mit PILSBRYs Beschreibung.

Hinsichtlich der Mundteile fehlt die Beschreibung des Palpus und der II. Maxille, weshalb hier eine Beschreibung und auch Figuren gegeben werden.

Palpus ziemlich kurz, gegen das Ende zu nicht schmäler werdend, vorne quer abgeschnitten. Längere Borsten längs des Vorder-, kürzere längs des Oberrandes.

Labrum. Der gezähnte Teil gerade, die borstentragenden Seitenteile etwas höher sitzend, wodurch das Labrum etwas konkav wird.

II. Maxille mit konkavem Vorderrand, der auf der Mitte einen Einschnitt trägt.

Das größte Exemplar maß im carino-rostralen Diameter 13 mm.

Nene Fundorte: Tjilatjap, Südküste Jawas, auf toten Korallenstücken im Hafen. 15./4. 1899. C. W. AURIVILLIUS. R. M.

Billiton, auf Mangrovewurzeln. 5./9. 1899. C. W. AURIVILLIUS. R. M.

Chthamalus caudatus PILSBRY, 1916. (Textfig. 57.)

Chthamalus caudatus PILSBRY, 1916.

Beschreibung bei PILSBRY 1916, Seite 314.
Komplettierende Beschreibung: Hinsichtlich Scutum und Tergum verweise ich auf PILSBRY.

Für die Mundteile können einige Ergänzungen gegeben werden, da bisher nur die Mandibel und die I. Maxille beschrieben wurden.

Textfig. 57. Chthamalus caudatus PILSBRY.

a Labrum mit Palpus, Vergr. 164 mal b II. Maxille, Vergr. 164 mal

Palpus keulenförmig, mit undeutlichem Vorderrand, der nach unten in den Unterrand übergeht. Lange Borsten am Unterrand und den Seiten, kürzere längs des Oberrandes.

I. Maxille mit durch zwei Einschnitte deutlich in drei Gruppen aufgeteilten Borsten.

II. Maxille wie bei Chth. Withersi, konkav, mit breitem Einschnitt auf der Mitte.
Als Vergleich mit Pilsbrys Angaben über die Segmentanzahl der Cirren kann folgende Tabelle gegeben werden.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Caudalanhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 8 mm</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 8.5 mm</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Pilsby: Diameter 10 mm.</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Pilsbrys Exemplare mit größerer Segmentanzahl waren größer als die hier untersuchten.

| Größ : |
|---|---|
| Carino-rostr. Diameter | Höhe |
| 8 | 2 |
| 8.5 | 2.5 |

Alter Fundort: Philippinen, auf Pollicipes mitella.
Neuer Fundort: Westküste Sumatras, auf Korallen, 1891, C. W. Auri-villius. R. M.

Genus Octomeris Sowerby, 1825.

Examinationstabelle.

O. angulosa Sowerby, 1825.

O. intermedia n. sp.

O. brunnea Darwin, 1854.

Octomeris brunnea Darwin 1854.

(Textfig. 58, 59. Taf. III*, 7.)

Beschreibung bei Darwin, 1854, Seite 484.
Komplettierende Beschreibung: Darwins Figuren der Opercularplatten können hier durch deutlichere ersetzt werden.

Textfig. 58. *Octomeris brunnea* D.

a Linkes Scutum (Außenseite), Vergr. 11 mal. b Rechtes Scutum (Innenseite), Vergr. 11 mal.

c Linkes Tergum (Außenseite), Vergr. 15 mal. Rechtes Tergum (Innenseite), Vergr. 15 mal.

Mundteile vorher nur unvollständig beschrieben und nicht abgebildet.

Labrum schwach konkav, gezähnt, mit spitzigen Zähnen, wie bei *O. angulosa*.

II. Maxille mit Einschnitt auf der Mitte des Vorderrandes, ohne Borsten.
Ramus kürzer als der andere. Die Segmente der längeren Cirren, von denen die zwei obersten länger und besser ausgebildet sind als die unteren haben drei bis vier Paar lange Borsten am Vorderrand.

Textfig. 60. Octomeris intermedia n. sp.

a Linkes Scutum, Außenseite, Vergr. 12 mal.
b Linkes Scutum, Innenseite, Vergr. 12 mal.
c Linkes Tergum, Außenseite, Vergr. 12 mal.
d Linkes Tergum, Innenseite, Vergr. 12 mal.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1,5</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>

Alter Fundort: Philippinen.
Neue Fundorte: Westküste Sumatras, auf Korallen. 1891. C. W. Auri-villius. R. M,
Octomeris intermedia n. sp.
(Textfig. 60, 61, Taf. III* 8)

Beschreibung: Seit Darwin enthält das Genus *Octomeris* zwei Arten, die ich beide untersuchen konnte. Die hier aufgestellte neue Art wurde
in zwei Exemplaren zusammen mit *O. brunnea* auf *Pollicipes mitella* sitzend angetroffen. Ihrem Äußeren nach gleicht sie am ehesten *O. angulosa*; in den inneren Teilen ist sie jedoch von dieser Art unterschieden, stimmt dagegen mit *O. brunnea* überein. Aber auch im Äußeren ist die Übereinstimmung mit *O. angulosa*, welche Art ich an Exemplaren aus dem typischen Lokal untersuchen konnte, nicht vollständig, weshalb ich die Tiere als eine deutlich getrennte neue Art ansche.

Manditile stimmen am ehesten mit *O. brunnea* überein.

Labrum konkav, mit Zähnen.

Mandibel mit drei Zähnen und einer pektinierten unteren Ecke. Pektiniierung am Oberrand von Zahn 3.

I. Maxille mit durch zwei Einschnitte in drei Gruppen aufgeteilten Borsten.

II. Maxille mit Einschnitt auf der Mitte des Vorderrandes, ohne Borsten.

Längenverhältnisse der Cirren zueinander wie bei *O. brunnea*.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 10 mm</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

\[1\) Nach Darwin ist der Articularkiel von *O. angulosa* wenig hervorstehend ("does not project much"). Bei Untersuchung großer Exemplare von *O. angulosa* fand ich auf
Die längeren Cirren haben drei Paar Borsten am Vorderrand der Segmente.

Textfig. 62. *Octomeris angulosa* Sowerby.

* a Palpus, Vergr. 64 mal. b Mandibel, Vergr. 64 mal. c I. Maxille, Vergr. 91,5 mal.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diam.</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Fundort: Südlicher Atlantischer Ozean, auf *Pelticerpes mitella*, 25/2. 1884.
Stoep. R. M.
Jean. C. W. Ausst. 1884.

dem Scutum einen hervorstehenden Artikularkiel, der ungefähr das gleiche Aussehen hatte wie der von *O. intermedia*, weshalb man sagen kann, daß die beiden Arten hierin übereinstimmen.
Familie *Balanidae* Gray, 1825.

Diagnose bei Pilsbry 1916, Seite 48.

Genus Balanus da Costa, 1778.

Balanus da Costa, 1778.

Lepas Linne, 1758, und frühere Verfasser.

Balanus Gronovius, 1763.

Monolopus Mörtch, 1852.

Balanus Darwin, 1854, und spätere Verfasser.

Diagnose: Gewöhnlich sechs Platten mit Radien, außer auf der Carina. Basis verkalkt oder membranös. Opercularplatten "fast dreieckig".

Verbreitung: Alle Meere.

Diskussion: Dieses Genus war schon für Darwin Gegenstand einer Aufteilung in Sektionen (A bis F). Die von Darwin verfolgten Prinzipien wurden in der Hauptsache auch in späteren Einteilungen angewendet, die in mehreren Hinsichten mit Darwin übereinstimmen. Hoek 1883 nimmt Darwins Einteilung auf und stellt eine neue Sektion G für zwei neue Arten, *B. corolliformis* und *B. hirsutus*, hinzu. 1903 und 1905 wird die Anzahl der Sektionen um eine weitere vermehrt, II, für eine neue Art, die, wie Sektion G, hauptsächlichst durch das Fehlen von Radien ausgezeichnet ist, jedoch eine verkalkte Basis besitzt. 1913 liefert Hoek eine
Einteilung, die in vielen Hinsichten von der Darwins abweicht. Sektion G wird als ein Genus *Hexclasma* aufgestellt, der sich in den Mundteilen nicht im geringsten an *Balanus*, sondern an die *Chthamalus*-Serie anschließt. Da Pilsbry 1916 eine Revision der Einteilung Hoeks vornahm, die in vielen Punkten berechtigt ist, soll hier seiner Einteilung in der Hauptsache gefolgt werden. An Stelle der Sektionen werden Subgenera gestellt. Pilsbrys Subgenera sind:

-Megabalanus Hoek,
-Balanus da Costa,
-Semibalanus Pilsbry,
-Hesperibalanus Pilsbry,
-Metabalanus Pilsbry,
-Chirona Gray,
-Austrobalanus Pilsbry,
-Solidobalanus Hoek,
-Armatobalanus Hoek,
-Membranobalanus Hoek,
-Conopea Say.

notwendig sein. Für das Subgenus *Balanus* wird z. B. als Merkmal an-
gegeben, daß Cirrus III, zum Unterschied vom Subgenus *Megabalanus*,
mit Zähnen bewaffnet sei. Dieser Charakter ist ungeeignet, da man auch
bei Repräsentanten des letztgenannten Subgenus Zähne auf Cirrus III
finden kann.

Für die Subgenera *Chirona*, *Solidobalanus* und *Hesperibalanus* erwähnt
Pilsbry in den Diagnosen die untere Zahnbewaffnung der Mandibel. Nach
dem zu urteilen, was ich hinsichtlich der Mandibel von *Balanus* fand,
zeigen gerade diese untersten Zähne große Variationen: sie können spitzig
oder hockerig sein, weshalb man darauf nicht allzu großes Gewicht
legen darf.

Subgenus *Megabalanus* Hoek, 1913.

Balanus Sektion *A* Darwin, 1854, Gravel, 1903, 1905 a.

Diagnose: Parietes, Basis und Radii von Poren durchbohrt. (Pilsbry
1916.)

Balanus tulipiformis Ellis, 1758.

(Textfig. 63.)

Balanus tulipiformis Ellis, 1758.
Lepas tulipa Piss., 1791.
Balanus tintinnabulum (var.) Chen.
Balanus tulipiformis Darwin, 1854, Westerve. 1897 a, Gravel, 1903, 1905 a, 1909.

Diagnose bei Gravel, 1905 a, Seite 246.
Beschreibung bei Darwin, 1854, Seite 204.
Komplettierende Beschreibung: Zur Ergänzung können Figuren der
Mandibel und der I. Maxille gegeben werden.

Hinsichtlich der Cirren kann hervorgehoben werden, daß Cirrus III
auf dem Vorderrand der Segmente Stacheln ausgebildet hatte, die nicht
krallenförmig gebogen waren. Hoek 1913, der das Vorkommen solcher
Stacheln bei *Balanus* näher studierte, nimmt diese Gruppe *Megabalanus*
nicht unter jene Formen auf, die Stacheln besitzen, obwohl sich in seinem
Material mit *B. tintinnabulum* ein Vertreter jener Gruppe vorfand. Unter-
suchte Exemplare der letztgenannten Art zeigten ebenfalls Stacheln in unge-
fähr der gleichen Erstreckung wie bei *B. tulipiformis*.

Vertreibung: Sizilien, Malta, Malaga, Madeira, Wasin (Westafrika).
Fundort: Messina, Sizilien, 1888, A. Appellöf. R. M.

Subgenus *Balanus* Da Costa.

Balanus Sektion C und D Darwin, 1854, Hoek, 1883.
Balanus Sektion C, D und II Gravel, 1903, 1905 a.
Section *Orthobalanus* Hoek, 1913 + *B. hystrix* Hoek.
Subgenus *Balanus* Pilsbry, 1916.

Textfig. 63. *Balanus tulipiformis* Ellis.

Balanus eburneus Gould, 1841.

Balanus eburneus Gould, 1841, Darwin, 1754, Weltner, 1897 a, Sumner, 1911, Pilsbry, 1916.

Komplettierende Diagnose: Schale konisch, glatt, von gelblich-weißer Farbe. Rippen auf der Innenseite der Parietes mit der Anzahl der Septa

Beschreibung: ausführlich bei Darwin 1854, Seite 248 und Pilsbry 1916, Seite 80, weshalb auf diese Verfasser verwiesen werden kann.

Verbreitung: Massachusetts bis Caribbean-Küste von Südamerika. In seichtem Wasser, bis 36.5 m Tiefe.

Balanus improvisus Darwin, 1854.

Beschreibung bei Darwin 1854, Seite 250 und Pilsbry 1916, Seite 84.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diam.</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

Balanus amphitrite communis Darwin, 1854.

(Textfig. 64.)

eine unbedeutende Querstreifung von leichteren Bändern, was auch aus Darwin's Figur hervorgeht. Form mehr oder minder abgeplattet konisch. Bei auf Wurzeln sitzenden Exemplaren war die Form mehr in carino-rostraler Richtung verlängert.

Radien ziemlich klein, mit sehr schiefem Oberrand, wie Hoek 1913 angibt. Doch darf darauf nicht allzu großes Gewicht gelegt werden, da die Größe der Radien sehr wohl mit der Form der Exemplare zusammenhängen kann. Darwin 1854 sagt darüber auch in der Diagnose der var. *communis*, Seite 240: „radii with their summits either oblique, sometimes in a high degree, or nearly parallel to the basis“.

Scutum mit granulierte Zuwachslinien. Adductorkiel stark entwickelt, ebenso der Articularkiel, der ungefähr halb so lang wie der Margo tergalis ist. Ausnahme für den Musculus depressor lateralis ziemlich unbedeutend.

Hinsichtlich der Mündteile kann darauf hingewiesen werden, daß das Labrum sowohl bei malayischen, als auch Mittelmeer-Exemplaren bis zehn Zähne an jeder Seite des Einschnittes trug, jedenfalls mehr als vier, wie Hoek angibt. Da jedoch die Anzahl der Zähne des Labrums oft variiert, darf hierauf nicht allzu großes Gewicht gelegt werden.

Auch an den hinteren längeren Cirren finden sich gleichartige Stacheln, wenn auch weniger gut entwickelt und weniger zahlreich.
Textfig. 64. *Balanus amphitrite communis*. D.

Vergleich der Segmentanzahl zweier Individuen aus verschiedenen Lokalen:

<table>
<thead>
<tr>
<th>Größe des Individuums und Lokal</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ägypten</td>
<td>12</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 11 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billiton, Sundainseln</td>
<td>12</td>
<td>24</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- 10 mm Ägypten: 12, 18, 11, 12, 13, 13
- 11 mm Billiton, Sundainseln: 12, 24, 11, 13, 14, 14

Balanus amphitrite albicostatus PILSBRY, 1916.

Balanus amphitrite communis KRÜGER, 1911 a.
? Balanus amphitrite niveus KRÜGER, 1911 a.
Balanus amphitrite albicostatus PILSBRY, 1916.

Scutum: Mittelpartie außen dunkel gefärbt, mit lichteren Längsleisten, was deutlich aus den Figuren von KRÜGER 1911 a, Taf. 1, Fig. 7, hervorgeht. Articularkiel deutlich, von halber Länge des Margo tergalis oder etwas länger, stark hervorstehend. „A sharp little fold sometimes doubled, divides the articular furrow.“ (PILSBRY 1916, Seite 90.) Adductorkiel deutlich ausgebildet, vom Articularkiel getrennt. Eine kleine Ausnehmung für den
Musculus depressor lateralis kann vorhanden sein, was ebenfalls aus Krüger's Figuren hervorgeht.

Tergum lang und schmal, ohne deutliche Längsrinne. Sporn schmal. Cristae am ganzen carinalen Teil der Platte stark entwickelt.

Die Cirren konnten von Pilsbry nicht untersucht werden, weshalb hier eine Ergänzung geben werden soll.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums und Lokal</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 12 mm</td>
<td>12</td>
<td>19</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Japan</td>
<td>19</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 11 mm</td>
<td>11</td>
<td>17</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>Hongkong</td>
<td>17</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 15 mm</td>
<td>12</td>
<td>19</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>Japan</td>
<td>19</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>28</td>
</tr>
</tbody>
</table>

Cirrus I wie gewöhnlich, mit verschiedenen langen Rami und protuberanten Segmenten.

Cirrus II mit beinahe gleich langen Rami und protuberanten Segmenten.

Die längeren Cirren mit drei bis fünf Paar Borsten am Vorderrand der Segmenten.

Verbreitung: Japan, Hongkong.

Zoolog. Bidrag, Uppsala, Bd. 7.
Fundorte: China, Hongkong, im Hafen. Eugenie-Expedition 1851—1853. U. M.
Japan, Yokohama, Vega-Expedition 1878—79. U. M.
Neuer Fundort: Japan, Kobe-Bai, Ebbstrand. 22./3. 1914. S. Bock. R. M.

Balanus amphitrite cirratus Darwin, 1854.
(Textfig. 63.)

Balanus amphitrite cirratus Darwin, 1854. Weltner, 1897 a, Gravel, 1903. 1905 a.

Dem Äußeren nach herrscht Übereinstimmung mit Darwins Fig. 2 b, Pl. V. 1854. Farbe, bleich purpurbraun, längsstreifig, transversal von weißen Flecken unterbrochen. Radien breit, mit ziemlich schießem Obertrand. Form konisch oder zylindrisch. Bei einigen zylindrischen Exemplaren konnte das Rostrum im Vergleich zur Carina außerordentlich hoch sein.

Mundteile: Labrum mit mittlerem Einschnitt, zwei bis vier Zähne an jeder Seite.

Palopus von gewöhnlichem Aussehen.

Mandibel mit drei deutlichen und zwei unteren höckerartigen Zähnen.
I. Maxille durch die stark hervorstehende, zwei große Stacheln tragende untere Partie charakteristisch. Im oberen Teil ein deutlicher Einschnitt. Die hervorstehende Partie sowohl bei Individuen von den Sundainseln als auch solchen aus China.

![Image of Balanus amphitrite cirratus D.]

Textfig. 65. Balanus amphitrite cirratus. D.

II. Maxille zweilappig, von dem für Balanus gewöhnlichen Aussehen. Der Vollständigkeit halber können Angaben über die Segmentanzahl der Cirren zweier, aus verschiedenen Lokalen stammender Individuen gemacht werden.

Verbreitung: Mündung des Indus; Australien, Philippinen (Darwin); Sunda-Inseln, Hongkong (Sammlung).

Neue Fundorte: China, Hongkong, im Hafen. Eugenie-Expedition 1851—1853. U. M.

Billiton, Sunda-Inseln, auf Mangrovewurzeln. 5./9. 1899. C. W. Aurivillius. R. M.

Balanus amphitrite niveus Darwin, 1854.

Balanus crenatus Fowler, 1912.

Komplettierende Diagnose: Schale konisch, weiß, mit längsgehenden hyalinen Linien, glatt, Epidermis nicht persistierend. Radien breit, mit schiefem, etwas unregelmäßigem Oberrand. Basis dünn, porös. Scutum durch die Zuwachslinien transversal gestreift; Articularkiel länger als der halbe Margo tergalis; Adductorkiel deutlich. Sporn des Tergums kurz, etwas breiter als $\frac{1}{3}$ des Margo basalis, mit einer breiten, schwachen Einsenkung. Labrum mit ungefähr drei Zähnen auf jeder Seite des Einschnittes. 1. Maxille mit gerader Schneide.

am ehesten mit Pilsbrys aus Marco, Florida stammenden, Pl. 19, Fig. 2, 1916 abgebildeten, übereinstimmten.

Verbreitung (nach Pilsbry): Vineyard Sound, Massachusetts bis Golf von Mexiko, Südliches Brasilien.

Fundort: Küste Floridas, auf einer Schnecke *Pyraula* sp. April 1892, Hansson. R. M.

Balanus trigonus Darwin, 1854.

(Textfig. 66.)

Balanus trigonus Darwin, 1854.

Balanus armatus Müller, 1867, 1868.

Balanus trigonus Hoek, 1883, Weltner, 1897, 1903, 1905 a, 1906 a, 1907 a, 1909, 1910, 1912 b, Krüger, 1911 a, Pilsbry, 1910, 1916.

Beschreibung ausführlich bei Darwin 1854, Seite 223, Krüger 1911 a, Seite 49 und Pilsbry 1916, Seite 111.

Wie schon Krüger und Pilsbry erwähnten, fallen hinsichtlich der Cirren besonders die krallenartigen Zähne auf dem Vorderrand der Segmente des vorderen Ramus von Cirrus III auf. Pilsbry glaubt in dieser Zahnbewaffnung eine Verschiedenheit zwischen den atlantischen und pazifischen Formen gefunden zu haben. Er sagt darüber 1916, Seite 114: „The typical pacific form of *trigonus* as figured by Krüger (Japan), has the anterior margin of the segments of Cirrus III more protuberant and more coarsely toothed than in Atlantic examples examined. The tergum is somewhat wider. If those differences prove constant when a large series is examined, the Atlantic race may be called *B. trigonus armatus*. As most of the specimens at my command are dry, I have been unable to satisfy myself that the differences are sufficiently constant to have racial value.״ Da ich in dem mir vorliegenden reichhaltigen Material sowohl Exemplare aus dem Atlantischen Ozean (Westindien) als auch solche aus
dem Stillen Ozean (Japan) zur Verfügung hatte, versuchte ich festzustellen, ob PilssbrYS Vermutung richtig sei. Hinsichtlich des Tergums fand ich keinerlei Unterschied. Ebenso war es mit der Zahnbewaffnung von Cirrus III. Im japanischen Material fanden sich sowohl Exemplare mit zahlreichen und stark ausgebildeten Zähnen, als auch solche mit schwachen und weniger zahlreichen (Textfig. 66 a, b). Exemplare aus Westindien zeigten ebenfalls wohlentwickelte Zähne, obwohl sich unter diesen auch Tiere mit kleineren Zähnen vorfanden (Textfig. 66 c). Ich kann also die von PilssbrY verwendete Rassenverschiedenheit nicht finden. Auch andere Charaktere gaben dieser Vermutung keine Stütze. Daß hinsichtlich der Zahnbewaffnung der Cirren große Variationen herrschen, zeigt sich auch darin, daß den hier untersuchten, aus Westindien und Japan stammenden Exemplaren die krallenartig gebogenen Zähne auf Cirrus IV fehlen, die PilssbrY jedoch in seinen Beschreibungen angibt. Dagegen findet man am Oberrand der Segmente einige aufwärts gerichtete Stacheln, was auch an Cirrus V und VI
der Fall ist. Der Penis trägt, wie jener von B. crenatus, dorsal an der Basis einen nach oben gerichteten konischen Fortsatz.

Fundorte: Japan, Sagami, Misaki. Ebbstrand und Schalenboden. 1—3 m, 10 m, 30—50 m, 450 m tief, auf Molluskenschalen und Tang. April, Mai und Juni 1914. S. BOCK. R. M.

Japan, Hirudostraße; N. Lat. 33° 15', Ö. Long. 129° 15'. 45 Faden. SVENSON. U. M.

Nach KRÜGER ist die größte Tiefe (für Japan) 150 m; das vorliegende Material enthält jedoch ein Exemplar aus 450 m Tiefe und GRUVEL 1907 a gibt für Individuen aus Afrika bis 3000 m an.

Balanus laevis BRUGUIÈRE, 1789.

(Textfig. 67.)

Balanus laevis BRUGUIÈRE, 1789.

Balanus discors RANZANI, 1818.

Balanus laevis mit var. nitidus DARWIN, 1854, HOEK, 1883, 1907 b, WELTNER, 1895, 1897 a, 1898, GRUVEL, 1903, 1905 a, ORTMANN, 1911, PILSBRY, 1910, 1916.

Beschreibung bei DARWIN 1854, Seite 227, PILSBRY 1910 und 1916, Seite 120.

Komplettierende Beschreibung und Diskussion: Von *B. laevis* erwähnen DARWIN und spätere Verfasser außer der Hauptform noch zwei Varietäten, nitidus und coquimbensis, von denen die letztgenannte deutlich durch ihre langgestreckte Form ausgezeichnet ist. Die Varietät nitidus, ausgezeichnet durch weiße oder bleich purpurfarbene Schale, die nicht von einer Membran bedeckt ist, und ein mit zwei Längsrinnen versehenes Sætum, soll nördlicher (Chile und Peru) vorkommen, zum Unterschied von der mit einer bräunen Membran und einem nur eine Längsrißine versehenen Sætum, wo die in südlichen Chile in der Magalhaens-Straße vorfindet. Doch fand DARWIN auch Übergangsformen. Er sagt darüber 1854, Seite 228: „Some specimens from Northern Chile are in an intermediate condition; and from Conception, in the South of Chile, where the climate approaches in character to that of the more southern parts of the continent, there are many specimens in so inter-
mediate a condition that I know not whether or no to rank them under
var. nitidus."

Geuvel 1903, Pl. 4, Fig. 7 bildet ein Individuum aus dem südlichen
Teil von Südamerika ab, das als var. nitidus bestimmt ist. Aus den Figuren
scheint hervorzugehen, daß das Exemplar mit nur einer breiten Längsrinne
dem Scutum versehen war, somit am ehesten mit der Hauptform und den
Exemplaren aus dem südlichen Teil Amerikas übereinstimmt. Pilsbury 1916,
der var. nitidus ebenfalls aufnimmt, erwähnt doch eine Reihe Ausnahmen:
Individuen aus der Magalhaens-Straße fehlte die Cuticula, andere, vom Kap
Horn stammende Exemplare, hätten eine normale, gelbe Cuticula und Scuta
mit zwei Längsrinnen, wie var. nitidus.

Da ich ein ziemlich reichhaltiges Material untersuchen konnte, hege
ich die Vermutung, daß der Unterschied zwischen der Hauptform und den
Varietäten ziemlich unbedeutend sei, da eben, wie schon oben betont
bewurde, eine Reihe Merkmale variieren. Mein Material enthält sowohl
kleine als auch große Exemplare mit ganz oder teilweise abgenützter
Cuticula, darauf beruhend, einer wie starken Abnutzung die Tiere aus
gesetzt waren. Bei stark abgenützten Individuen war das Orificium natür
lieh weiter. Die meisten Exemplare hatten eine breite Längsrinne, einige
die Tiere von den Sandwichinseln (neuer Fundort) und Chincainseln
hatten zwei deutliche Längsrinnen auf dem Scutum und außerdem eine
braune, deutliche Cuticula auf der Schale. Meiner Meinung nach scheint
die Varietät nitidus von der Hauptform nicht unterschieden zu sein,
weshalb ich jene nicht aufnehme.

Mundteile unvollständig beschrieben, weshalb hier eine Ergänzung
gemacht werden kann.

Labrum unbedeutend haarig, mit einigen kleinen Zähnen versehen.

Palpus langgestreckt, keulenförmig, mit geradem, kurze Borsten
tragendem Oberrand. Vorderrand abgesetzt, Ecken etwas abgerundet, mit
langen Borsten. Unterrand mit feinen Haaren. Borsten im vorderen Teil
des Palpus über dem Unterrand.

Mandibel: Der dritte Zahn, wie Darwin angibt, dicker und größer
as die zwei oberen. Zahn 4 und 5 stumpf, voneinander mehr oder weniger
undeutlich getrennt.

I. Maxille mit mehr oder minder deutlichem Einschnitt, oben mit
kleinen Borsten. Im übrigen mit gleich großen Stacheln, zu unterst mit
kleinern Borsten versehen.

II. Maxille zweilappig. Oberer Lobus vorne stark konvex. Borsten
am Rande und an den Seiten. Unterer Lobus kurz, konvex.

Girren: Auf Cirrus III wurden die von Krüger, Hoek und Pilsbury
für andere Arten beschriebenen krallenartigen Zähne an Vorderrand der
Segmente angetroffen. Sowohl gerade, als auch krallenartig gebogene Zähne
waren an beiden Rami zahlreich entwickelt. Die an den Seiten sitzenden
Zähne gehen in Kammschuppen über. Und auch längs des Oberrandes und in der dorsalen Ecke findet man solche Kammschuppen von verschiedener Größe. Die Borstenbewaffnung des Vorderrandes ist an diesen

Textfig. 67. *Balanus laevis* Brug.

Segmenten in den oberen Teil des Segmentes verlegt. Das Vorkommen solcher Zähne wird von Krüger dahin gedeutet, daß die Art von in Spongien wohnenden Formen herstamme, da derartige *Balanus*- und *Acosta*-

Auch bei dieser Art trägt der Penis an der Basis einen nach oben gerichteten Fortsatz, der die Andeutung einer Teilung in zwei Glieder zeigt.

Verbreitung: Kalifornien, Chile, Peru, Feuerland, Magalhaens-Straße, Falklandsinseln, Sandwichinseln, Chineainseln; von der Ebbregion bis zu 275 m Tiefe.

Fundorte:

<table>
<thead>
<tr>
<th>Lokal</th>
<th>Tiefe in m</th>
<th>Boden</th>
<th>Datum</th>
<th>Sammler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribune-Bank, Süd-Amerika</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Feuerland-Exp. 1895—96</td>
</tr>
<tr>
<td>Haberton Harbour, Süd-Amerika</td>
<td>18—36</td>
<td>—</td>
<td>14./2. 1896</td>
<td></td>
</tr>
<tr>
<td>Porvenir, Süd-Amerika</td>
<td>11—18</td>
<td>Algen</td>
<td>25./2. 1896</td>
<td></td>
</tr>
<tr>
<td>Rio Condor, Süd-Amerika</td>
<td>91</td>
<td>Tote Schalen</td>
<td>1896</td>
<td></td>
</tr>
<tr>
<td>Puerto Condor, Süd-Amerika</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Puerto Toro, Süd-Amerika</td>
<td>36—50</td>
<td>Tote Schalen</td>
<td>11./2. 1896</td>
<td></td>
</tr>
<tr>
<td>Port Louis, Greenpatch,</td>
<td>7</td>
<td>Lehmn. Steine</td>
<td>28./7. 1902</td>
<td>Schwed. Südpoles—Exp. 1901—1903</td>
</tr>
<tr>
<td>Falklandsinseln, Lat. 51° 31',</td>
<td></td>
<td>mit Algen, am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Long. 58° 10'</td>
<td></td>
<td>Außenrand der</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Louis, Falklandsinseln</td>
<td>—</td>
<td>Auf einer Schäre in</td>
<td>1902</td>
<td></td>
</tr>
<tr>
<td>Port William, Falklandsinseln</td>
<td>40</td>
<td>Sand u. kleine</td>
<td>4./7. 1902</td>
<td>Feuerland-Exp. 1895—96</td>
</tr>
<tr>
<td>S. Lat. 51° 40', W. Long. 57° 41'</td>
<td></td>
<td>Steine u.Algen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romanche Bay, Süd-Amerika</td>
<td>20</td>
<td>Tote Schalen mit Lehmn.</td>
<td>4./2. 1896</td>
<td></td>
</tr>
<tr>
<td>Lokal</td>
<td>Tiefe in m</td>
<td>Boden</td>
<td>Datum</td>
<td>Sammler</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Fortesque Bay, Süd-Amerika</td>
<td>18–22</td>
<td>Algen</td>
<td>25./3. 1896</td>
<td>Feuerland-Exp. 1895–96</td>
</tr>
<tr>
<td>Cap Valentin, Süd-Amerika</td>
<td>275</td>
<td>Tote Schalen mit Steinen</td>
<td>12./3. 1896</td>
<td>"</td>
</tr>
<tr>
<td>Punta Delgada, Süd-Amerika</td>
<td>9</td>
<td>Kleine Steine und Sand</td>
<td>18./2. 1896</td>
<td>"</td>
</tr>
<tr>
<td>Chincainseln, Peru</td>
<td>—</td>
<td>—</td>
<td>1851</td>
<td>Verhgren</td>
</tr>
<tr>
<td>Honolulu, Sandwich-inseln</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Eugenie-Exp. 1851–1853</td>
</tr>
</tbody>
</table>

Balanus balanus (Linne, 1758).

Lepas balanus Linne, 1758, Born, 1780, Chemnitz, 1785, Donovan, 1804.
Balanus porcupus Da Costa, 1778.
Balanus sulcatus Bruguière, 1789.
Lepas costata Montagu, 1803, Donovan, 1804.
Lepas scotica Wood, 1815.
Balanus tessellatus Sowerby, 1818.
Balanus geniculatus Conrad, 1830, 1841.
Balanus communis Brown, 1844.
Balanus costatus Brown, 1844.
Balanus porcupus Darwin, 1854, Miers, 1878, A. W. Malm, 1882, Weltner 1897 a. 1897 b, 1900, Nordgaard, 1905, Gruvel, 1903, 1905 a, Hoek, 1909, Summer 1911.
Balanus balanus C. W. Aurivillius, 1894 b Pilbry, 1916.

Diagnose bei Gruvel 1905 a, Seite 237.
Beschreibung ausführlich bei Darwin 1854, Seite 256, Pilsbry 1916, Seite 149 und anderen Verfassern.

Von Interesse kann die Angabe eines neuen Fundortes auf der südlichen Halbkugel, nämlich Feuerland, sein. Ein Vergleich zwischen diesen
Exemplaren und Tieren aus Bohuslän ergab sowohl in äußeren als auch in inneren Teilen große Übereinstimmungen.

Fundort: Schwedische Westküste, Bohuslän, Gullmarfjord, 10—50 m tief. Juli 1917 und 1918. C. A. Nilsson-Cantell 1918.

Neuer Fundort: Ushuaia, Feuerland, 1904. Klinkowström, R. M.

Balanus crenatus Bruguière, 1789.

Balanus crenatus Bruguière, 1789.
Lepas fistula Spengler, 1790.
Lepas elongata Gmelin, 1791.
Balanus rugosus Pulteney, 1799.
Balanus rugosus Montagu, 1803.
Balanus glacialis (?) Gray, 1819.
Balanus rugosus Gould, 1841.

Diagnose bei Grøvel 1905 a. Seite 240.

Beschreibung ausführlich bei Darwin 1854, Seite 261, Pilsbry 1916, Seite 165 u. a. Verfassern.

Komplettierende Beschreibung: Wie schon früher hervorgehoben wurde, herrscht hinsichtlich der äußeren Teile große Variation, was ich auch an Exemplaren aus Bohuslän, die ich näher untersuchte, feststellen konnte. Es wurden sowohl konische Individuen, mit glatter oder gefalteter Schale, als auch zylindrische, verlängerte Tiere, deren Öffnung gleich weit oder weiter als der Umfang der Basis war, angetroffen. Die zylindrische Form fand ich besonders bei Individuen, die in Spongien eingebettet saßen. Hinsichtlich der inneren Teile ist wenig zu ergänzen. Der von Darwin beobachtete Fortsatz aus der Basis des Penis konnte auch hier festgestellt werden.

Verbreitung: Kalte und gemäßigte Meere.

Fundorte: Schwedische Westküste, Bohuslän. Gullmarfjord, auf Molluskenschalen und anderen Gegenständen, ungefähr 10—50 m tief, Juli 1918. C. A. Nilsson-Cantell 1918.

Kalifornien: San Franzisko; Eugenie-Expedition 1851—1853.

Balanus glandula Darwin, 1854.

(Textfig. 68).

Balanus glandula Darwin, 1854. Weltner, 1897 a, Grøvel, 1905 a.
Balanus crenatus Pilsbry, 1911 c.
Balanus glandula Pilsbry, 1916.

Komplettierende Beschreibung: Das vorliegende Material, das aus dem gleichen Lokal wie das Darwin's und Pilsbry's stammt, enthielt sowohl die konischen als auch die langgestreckten, zylindrischen Formen. Erstere oft auf den langgestreckten gruppiert, wie Pilsbry (Fig. 57 F, 1916) abbildet.

Hinsichtlich des Scutums soll die außen vom Apex zur Basis verlaufende Längsrinne erwähnt werden, die besonders dann hervortritt, wenn sich die Opercularplatten in ihrer natürlichen Lage befinden.

Cirrus III weicht von dem der nahestehenden Art B. crenatus ab, die am Vorderrand der Segmente des vorderen Ramus kurze Zähne trägt; solche fehlen jedoch bei B. glandula oder werden von einigen kleinen, unbedeutenden, geraden Zähnen repräsentiert.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
</tr>
</tbody>
</table>
Verbreitung: Südliches Kalifornien bis zu den Aléuten.

Balanus patellaris Spengler, 1780.

Diese nur in ihren äußeren Teilen bekannte Art wurde von *Darwin* 1854, Seite 259 beschrieben. Sie ist durch die pentagonale Form leicht zu identifizieren. Leider ließ das mir vorliegende Material keine Ergänzung hinsichtlich der inneren Teile zu.

Alte Fundorte: Bengal, Philippinen.
Neuer Fundort: Nordwachter, Javasee; am Strand, an Rinden sitzend.

C. W. Aurivillius. R. M.

Subgenus *Semibalanus* Pilsbry, 1916.

Balanus Sektion E (außer *B. declivis*) Darwin, 1854.

Subgenus *Semibalanus* Pilsbry, 1916.

Balanus balanoides (Linné, 1746).

Lepas balanoides Linné, 1746, 1766, Fabricius, 1780.
Balanus fistulosus Bruguière, 1789.
Balanus vulgaris? da Costa, 1778.
Lepas elongata Gmelin, 1790.
Balanus clavatus Pulteney, 1799.
Lepas balanoides et Clavatus Montagu, 1803.
Balanus palmatus Lamarck, 1818.
Balanus fissus Anton, 1839.
Balanus ovuliris Gould, 1841.
Balanus elongatus Gould, 1841.
Balanus interruptus de Kay, 1844.
Chthamalus germanus et *philippi* Frey und Levkort, 1847.
Balanus balanoides Darwin, 1854, Stimpson, 1893, Hoek, 1876 b, 1900, Letdy, 1882, A. W. Malm, 1882, Weltner, 1897 a, 1897 b, 1900, Gruvel, 1903, 1905 a, 1910, Sumner, 1911, Pilsbry, 1916.

Diagnose: bei Gruvel 1905 a, Seite 241.

Beschreibung: ausführlich bei Darwin 1854, Seite 267 und Pilsbry 1916, Seite 182, weshalb hier nur einige Zusätze in Hinsicht auf Exemplare aus Bohuslän gemacht werden können. Diese abgeplattet konischen Individuen konnten, saßen sie dichter, eine etwas zylindrische Form haben. Parietes glatt oder gefaltet, mitunter stark korrodiert, wodurch die Ober-

Subgenus Chirona Gray, 1835.

Chirona Gray, 1835.
Balanus Sektion F DARWIN, 1854 (in parte).
Balanus Sektion Striobalanus HOEK, 1913.
Subgenus Chirona PILSBRY, 1916.

Balanus amaryllis DARWIN, 1854.
(Taf. III* 9.)

Balanus amaryllis DARWIN, 1854.
Balanus amaryllis dissimilis und clarovittata LANCHESTER, 1902.
Balanus amaryllis HOEK, 1888, 1913, Weltner, 1897 a, Gruvel, 1903, 1905 a, PILSBRY, 1916.

Diagnose bei DARWIN 1854, Seite 279.
Beschreibung ausführlich bei DARWIN 1854, Seite 279 und HOEK 1913, Seite 179, weshalb wenig zu ergänzen ist. Die aus Japan stammenden Exemplare waren von stark konischer Form mit ziemlich kleinem, gezähnten Orificium. Schale schwach, rosafarben, mit längsgehenden Streifen. Innere Teile s. HOEK.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Fundort: Japan, auf einer Krabbe: Hyasimnus diacanthus. JAMRACK. R. M.
Subgenus *Austrobalanus* PILSBRY, 1916.

Balanus Sektion *F* DARWIN, 1854, (in parte).
Balanus Sektion *Striatobalanus* HOEK, 1913 (in parte).
Subgenus *Austrobalanus* PILSBRY, 1916.

Balanus flosculus sordidus DARWIN, 1854.
(Textfig. 69.)

Balanus flosculus sordidus DARWIN, 1854, Weltner, 1895, 1897 a, 1898, Gruvel, 1903, 1905 a, PILSBRY, 1916.

Diagnose bei DARWIN 1854, Seite 290.
Beschreibung bei DARWIN 1854, Seite 290 und PILSBRY 1916, Seite 219.

Komplettierende Beschreibung: Hinsichtlich der äußeren Teile verweise ich auf DARWIN.

Mundteile: Labrum mit breiter Einbuchtung. An jeder Seite zwei bis drei kleine Zähne.

II. Maxille zweilappig, der obere Lobus relativ kurz, vorne konkav, ohne Borsten im unteren Teil. Unterer Lobus konvex, mit Borsten.

Verbreitung: Magalhaens-Straße, südlicher Teil des Feuerlandes.

Fundort: Ushuaia, Ebbregion. 13./3. 1902. Schwed. Südpolexpedition 1901—1903. R. M.

Subgenus *Conopea* SAY, 1822.

Conopea SAY, 1822.

Conopea GRAY, 1825.

Balanus O. G. COSTA, 1839.

Balanus Sektion *B* DARWIN, 1854.

Balanus Sektion *Patella-Balanus* HOEK, 1913.

Subgenus *Conopea* PILSBRY, 1916.

Textfig. 69. Balanus flosculus sordidus D.

a Mandibel, Vergr. 96 mal. b I. Maxille, Vergr. 96 mal. c II. Maxille, Vergr. 50 5 mal.

Balanus proripiens Hoek, 1913.

(Textfig. 70 c, d.)

Balanus proripiens Hoek, 1913.

breit, undeutlich abgesetzt; Articolarkiel niedrig; Cristae für den Musculus depressor undeutlich. Kleine, gerade Zähne auf Cirrus III und im unteren Teil des kürzeren Ramus von Cirrus IV.

Beschreibung ausführlich bei Hoek 1913, Seite 228.

Textfig. 70. Balanus acutus n. sp.

a Rechtes Scutum. b Linkes Tergum, Innenseite, Vergr. 15 mal.

Balanus proripiens Hoek, 1913.

c Rechtes Scutum. d Linkes Tergum, Innenseite, Vergr. 11 und 15 mal

Die vorliegenden, von den Fidschiinseln stammenden Exemplare, stimmen mit Hoeks Beschreibung von Exemplaren aus dem malaysischen Archipel wohl überein. Wie Hoek und Pilsbry hervorheben, steht diese Art B. cymbiformis Darwin außerordentlich nahe. Gegenwärtig ist es schwer zu entscheiden, ob der Unterschied zwischen beiden Arten wirklich hinreichend ist, die Species zu trennen, da über B. cymbiformis nur unvollständige Beschreibungen vorliegen. Um diese Frage lösen zu können,

\textbf{Scutum:} Die basitergale Ecke wird von \textit{Hoek} als, im Vergleich zu \textit{B. cymbiformis}, weniger abgerundet angegeben. Das war auch bei meinen Exemplaren der Fall, doch glaube ich, daß man darauf kein größeres Gewicht legen dürfe. Margo basalis stark gebogen. Wie \textit{Hoek} angibt, ist der Articularkiel wohlentwickelt, was, nach \textit{Darwin}, bei \textit{B. cymbiformis} nicht der Fall sei. Im übrigen mit \textit{Hoek} Beschreibung übereinstimmend.

\textbf{Mundteile wie bei \textit{Hoek}.}

\textbf{Cirren:} Gerade Zähne längs des Vorderrandes der Segmente des längeren Ramus von Cirrus III, auf dem kürzeren Ramus nicht so zahlreich.

Nach \textit{Hoek} tragen die unteren Segmente des kürzeren Ramus von Cirrus IV ebenfalls, wenn auch sehr unbedeutende Zähne.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 10 mm</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Breite 5 mm, Höhe 7,5 mm</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 8 mm</td>
<td>7</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Die Segmentanzahl der Cirren stimmt mit Holks Angaben recht gut überein, die der längeren Cirren varierte um 20. Im unteren Teil der Cirren waren die Segmentgrenzen oft schwer zu erkennen.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Breite</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>7-5</td>
</tr>
<tr>
<td>8</td>
<td>3-5</td>
<td>4</td>
</tr>
</tbody>
</table>

Alter Fundort: Malayischer Archipel, zwischen den Inseln Wowoni und Buton, 74—94 m tief.

Neuer Fundort: Fidschi, Viti Levu, südöstlich von Mbau, auf Melitodes in der Ebbregion. 2./7. 1917. S. Bock. U. M.

Balanus scandens PILSBRY, 1916.

Beschreibung bei PILSBRY 1916, Seite 239.

Alter Fundort: Japan, Ose-Zaki, Honshu-Islands.

Neuer Fundort: Japan, Kiuschin, Gotoinseln auf einer Scleraczonie, 150 m. 15./5. 1914. S. Bock. U. M.

Balanus acutus n. sp.

(Textfig. 70 a, b. 71.)

Diagnose: Schale dünn, unbedeckt. Farbe weiß oder schwach rosa. Basis und Parietes nicht porös, innen mit Längsrippen, die an der Basis
schwächer ausgebildet sind. Basis schalenförmig, gekielt, mit einer Rinne für die Unterlage (Acanthogorgie). Rostrum stark verlängert. Scutum nicht längsstreifig, mit deutlichem Articularkiel, ohne Adductorkiel; basitergale Ecke deutlich abgesetzt; Margo basalis schwächer konvex. Tergum dreieckig, mit spitzen Winkel beim Apex; Sporn breit, undeutlich abgesetzt; Articularkiel niedrig; Cristae für den Musculus depressor undeutlich. Cirren ohne Zähne.

Textfig. 71. *Balanus acutus* n. sp.

* a Palpus, Vergr. 60 mal.
* b Mandibel, Vergr. 98 mal.
* c I. Maxille, Vergr. 137 mal.
* d II. Maxille, Vergr. 98 mal.

Mandibel mit fünf Zähnen, der unterste mit der unteren Ecke zusammenhängend.

I. Maxille mit geradem Vorderrand, ohne Einschnitt, was dagegen B. proripiens hat.

II. Maxille hat den oberen Lobus spitzig und mit konkavem Vorderrand.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Breite</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>7</td>
<td>9,5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>7,3</td>
</tr>
</tbody>
</table>
Ffundort: Japan, Kiushiu, Okinoshima, Kagoshima; auf einer Acanthogorgie. 15./5. 1914. S. Bock. U. M.

Japan, Goto-Inseln; auf einer Acanthogorgie. 15./5. 1914. S. Bock. U. M.

Subgenus Armatobalanus Hoek, 1913.

Balanus Sektion F Darwin, 1854 (in parte).

Diskussion: Diese wie auch die folgende Gruppe zeigt Ähnlichkeiten mit dem Genus Acasta nicht nur in der Bewaffnung von Cirrus IV und den Opercularplatten, wie Hoek hervorhebt, sondern auch hinsichtlich der Mundteile, besonders des Labrums und des Palpus.

Balanus arcuatus Hoek, 1913.

(Textfig. 72 b.)

Balanus arcuatus Hoek, 1913, Pilsbry, 1916.

Hinsichtlich der inneren Teile kann besonders die Zahnbewaffnung von Cirrus III hervorgehoben werden. Vorderrand der Segmente stark vor-

Alter Fundort: Zulu-Archipel.

Balanus quadrivittatus Darwin, 1854.

(Textfig. 72 a, Taf. III* 10.)

Balanus quadrivittatus Darwin, 1854, Weltner, 1897 a, Grüvel, 1905 a, Hoek, 1913, Pilsbry, 1916.

Beschreibung bei Darwin, 1854, Seite 284 und Hoek 1913, Seite 213.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Segmentanzahl der Cirren.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 4 mm</td>
<td>7</td>
<td>18</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Hoek's Angaben:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größte Exemplare 3 mm</td>
<td>7</td>
<td>18</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

An Cirrus II beobachtet man an den oberen Segmenten des kürzeren Ramus geliederte Borsten, die an die Verhältnisse bei *Chthamalus* erinnern. Cirrus IV hat krallenartig gebogene Zähne am distalen Segment des Protopoditen und den unteren Segmenten des vorderen Ramus.

Die folgende Tabelle zeigt die Variation der Zahnanzahl von Cirrus IV an der Seite der Zähne sitzen oft kleine Kammschuppen.

<table>
<thead>
<tr>
<th>Protopodit</th>
<th>Segmente</th>
<th>Hoek's Angaben</th>
<th>Sammlung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>distale Segmente</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>vorderer Ramus</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Verbreitung: Philippinen, Sunda-Inseln.
Neuer Fundort: Mendanao, Gaspar-Sund, 1891, C. W. Aurivillius, R. M.

Subgenus *Membranobalanus* Hoek 1913.

Balanus Sektion *E* *Darwin*, 1854 (in parte).

Balanus longirostrum Hoek, 1913.

(Textfig. 72 c).

Balanus longirostrum Hoek, 1913.

Komplettierende Diagnose: In Spongien eingebettet. Schale dünn. Radien vorhanden. Rostrum kleiner als 10 mm, doppelt so lang als die Carina, basaler Teil schmal; die Außenseite hat über ihre ganze Länge eine longitudinale Rinne. Carinolateralia klein. Scutum mit zwei seichten Längsrinnen, Adductorkiel fehlt. Tergum ungefähr so breit wie das Scutum, mit
breitem Sporn. Vorderer Ramus von Cirrus IV mit nach oben gerichteten Stacheln im oberen Teil der Segmente.

Beschreibung ausführlich bei Hoek 1913, Seite 205.

Hinsichtlich der inneren Teile ist wenig zu ergänzen. Bemerkenswert ist das Vorkommen kleiner Zähne zwischen Zahn 2 und 3 und 4 der Mandibel, welche bei B. declivis fehlen (Hoek 1913, Pl. XX, Fig. 12). Übrigens sind die beiden Arten in vieler Hinsicht deutlich getrennt.

Verbreitung: Sunda-Inseln.

Genus Acasta Leach, 1817.

Acasta Leach, 1817, Darwin, 1854, und spätere Verfasser.

Verbreitung: Gemäßigte und tropische Meere.

Acasta Dolleini Krüger, 1911.

Acasta Dolleini Krüger, 1911 a, Pilsbry, 1916.

Beschreibung: unvollständig bei Krüger, 1911 a, Seite 56.

Opercularplatten von Krüger abgebildet, aber nicht näher beschrieben.

Sentum ohne Längsstreifen, mit deutlichen Zuwachslinien (ziemlich breit), in der Länge nicht ausgezogen. Articularkiel relativ wohllentwickelt, von halber Länge des Margo tergalis. Grube für den Musculus depressor lateralis außerordentlich groß. Bei den äußeren basalen Ecken ebenfalls eine Grube, was aus Krügers Fig. 39 c₂, Pl. IV, 1911 a hervorgeht. Adductorkiel fehlt.

Die inneren Teile konnten wegen der schlechten Konservierung leider nicht untersucht werden.

Alte Fundorte: Japan, Bucht von Sagami, Sundainseln, Zulu-Archipel.

Fundort: Japan, Sagami, Misaki. Ebbstrand. 22./6. 1914. S. Bock. R. M.

Acasta aculeata n. sp.

(Textfig. 73, 74).

zu sein, als bei der vorliegenden. Parietes außen mit quergehenden, kleine Höcker tragenden Rippen versehen. Radien ebenfalls mit deutlicher Querstreifung. Carinolateralia relativ wohlentwickelt, Breite ungefähr wie bei A. spongites, jedoch ziemlich kurz, da sie nicht bis zur Basis der Parietes

Textfig. 71. *Acasta aculeata* n. sp.

a Rechtes Scutum, Innenseite, b rechtes Tergum, Innenseite, Vergr. 15 mal, c Parietes, Außenseite, d Parietes, Innenseite, Vergr. 10 mal, cl Carinolaterale.

Palpus langgestreckt, mit etwas konkavem, borstenträgerndem Oberrand. Vorne spitzig, mit deutlichem, borstenträgerndem Vorderrand.

I. Maxille mit geradem Vorderrand, ohne Einschnitt, mit kräftigen Stacheln.

II. Maxille zweilappig, der obere Lobus stark verlängert, Vorderrand gerade. Unterer Lobus klein, mit konvexem Vorderrand.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 8 mm</td>
<td>7</td>
<td>20</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

Fundort: Golf von Siam; Salmin, R. M.

Diese neue Art zeigt mit mehreren anderen Arten Ähnlichkeiten, weshalb es schwer ist, die nächste Verwandtschaft anzuzeigen. Mit A. sporillus besteht Ähnlichkeit hinsichtlich der nicht bis zur Basis reichenden Carinolateralia, mit A. laevigata und glans hinsichtlich der Basis. Die vorliegende Art ist besonders durch die langen, mit Zuwachslinien versehenen, in großen Löchern auf den Parietalia sitzenden Kalkstacheln ausgezeichnet.

Beschreibung: Diese neue Art ist in ihrem Äußeren *A. Dosleini* Krüger ziemlich ähnlich. Auch hier ist die Basis platt oder etwas schalenförmig. Doch unterscheiden sich die beiden Arten besonders hinsichtlich der Opercularplatten; *A. porata* hat auch zahlreichere Poren in den Parietes. Mit *A. sporillus* und *A. aculeata* n. sp. herrscht Ähnlichkeit hinsichtlich der nicht bis zur Basis reichenden Carinolateralia.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Textfig. 75. *Acasta porata* n. sp.

a Labrum, Vergr. 67 mal.
b Mandibel, Vergr. 81 mal.
c Linkes Scutum, Innenseite, Vergr. 19 mal.
d Linkes Tergum, Innenseite, Vergr. 19 mal.
e Linkes Tergum, Außenseite, Vergr. 19 mal.
f Parietes, Innenseite.
g 4. Cirrus, Vergr. 61,5 mal.

Mundteile: Labrum von gewöhnlichem Aussehen, mit breiter Einbuchtung, an jeder Seite drei Zähne, haarig.

Palpus langgestreckt, gegen das Ende zugespitzt. Deutlich abgesetzter Vorderrand.

Mandibel mit drei deutlichen und zwei unteren, höckerartigen Zähnen, unterst ein Paar Stacheln.

I. Maxille mit geradem Vorderrand, mit ungefähr gleich großen Stacheln besetzt. Die zwei untersten etwas kräftiger.

II. Maxille langgestreckt, zweilappig, von gewöhnlichem Aussehen.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino - rostr. Diameter 7-5 mm.</td>
<td>7</td>
<td>19</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Fundorte: Sundainseln, Gasparssund, Mendanao. In Spongien. 1891. C. W. Aurivillius. R. M.

Genus Elminius Leach, 1825.

Elminius Leach, 1825, Darwin, 1854, und spätere Verfasser.

Verbreitung: Gemäßigte Gebiete der südlichen Halbkugel. Litoralregion.

Elminius Kingii Gray, 1831.

(Textfig. 76.)

Elminius Kingii Gray, 1831.
Elminius Leachi King und Broderip, 1831, Sowerby.
Elminius Kingii Darwin, 1854, Wettner, 1897 a, 1898, Geuvel, 1903, 1905 a, 1912 a, Hoek, 1907 b, Ortman, 1911, Stebbing, 1914, Pilsbry, 1916.

Komplettierende Diagnose: Schale grau oder schmutzig-weiß, ohne Längsrippen, glatt. Radien breit, mit glattem Rand. Scutum ohne Adductor-

Diagnose: bei **Darwin 1854, Seite 348.**

Komplettierende Diagnose: Das untersuchte Material enthielt sowohl niedere, konische, als auch hohe, zylindrische Exemplare, die gewöhnlich gegen die Basis zu schmäler wurden.
Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>13,5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5,5</td>
<td>5</td>
</tr>
</tbody>
</table>

Mundteile von Darwin nur ganz kurz beschrieben, weshalb sie hier abgebildet und eingehender beschrieben werden sollen.

Labrum mit einer Einbuchtung in der Mitte des Vorderrandes, die ziemlich tief ist, nach oben zu weiter wird.

II. Maxille zweilappig, der obere Lobus mit konvexem Vorderrand. Dicht mit langen Borsten besetzt.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diameter 4-5 mm</td>
<td>8</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Carino-rostr. Diameter 4 mm</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Penis lang, geringelt, gegen die Spitze zu unbedeutend behaart.

Verbreitung: Feuerland, Patagonien, Chile.

Elminius modestus Darwin, 1854.

(Textfig. 77.)

Elminius modestus Darwin, 1854, Weltner, 1897 a, Gruvel, 1903, 1905 a.

Beschreibung bei Darwin 1854, Seite 350.

Komplettierende Diagnose: Nach Darwin ist das Tergum ziemlich variabel; das des untersuchten Exemplares stimmte mit Darwins Fig. 1 e, Pl. XII überein.

Mundteile vorher nur ganz kurz beschrieben, weshalb Abbildungen gegeben werden sollen.

Labrum wie Darwin hervorhebt, mit tiefer Einbuchtung in der Mitte und drei kräftigen Zähnen an jeder Seite. Mit zerstreuten Haaren.

Mandibel mit fünf wohlansgebildeten und deutlich getrennten Zähnen, die mit kleineren Nebenzähnen versehen sind. Unter dem fünften Zahn eine pektinierte Partie, die den Vorderrand abschließt.
I. Maxille mit Einschnitt im oberen Teil, darin kleinere Stacheln. Untere Partie des Vorderrandes vorspringend, mit großen Stacheln zu oberst, kleineren darunter, wie bei *E. Kingii*.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 4.5 mm</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Penis lang, geringelt, unbehaart.

Verbreitung: Neu-Südwales, Van Diemens-Land, Neuseeland.

U. M.

Genus Creusia Leach, 1817.

Creusia Leach, 1817, und spätere Verfasser.

Creusia spinulosa Leach, 1824.

Creusia spinulosa Leach, 1824.

Creusia gregaria Sowerby, 1823.

Creusia grandis Chenu.

Creusia spinulosa Darwin, 1854, Weltner, 1897 a, Gruevel, 1905 a, 1909, Annandale, 1906 a, Hoek, 1913.

Von dieser Art konnte ich zwei von *Darwins* Varietäten identifizieren. Nämlich:

Varietät 6 Darwin, 1854.

(Textfig. 78.)

Die Exemplare waren an Madreporarien befestigt, die Basis eingesenkt, doch waren die Tiere nicht überwachsen. Orificium klein; davon gehen radiär feine Leisten aus, die über den Rand vorspringen. Platten oben relativ dünn, unten durch dünne, auf der Innenseite der Parietes liegende Scheiben verdickt. Die hauptsächlichsten Verschiedenheiten zwischen diesen Varietäten bestehen in der Form der Opereularplatten. Septum transversal verlängert, wie auf *Darwins* Fig. 6 n, Pl. XIV, 1854; Adductorkiel wohlentwickelt. Tergum wie bei *Darwin* Fig. 6 q, Pl. XIV; Sporn bei der basisentalen Ecke relativ schmal. Basiceirinale Ecke deutlich vorspringend.

Mundteile von *Darwin* nicht beschrieben, doch von *Hoek* 1913 für eine neue Varietät erklärt, weshalb hier eine Ergänzung gemacht werden kann.
Labrum mit tiefer Einbuchtung auf der Mitte, von wo aus die Seiten abfallen. Drei Zähne an jeder Seite der Einbuchtung.

I. Maxille mit geradem Vorderrand, der lange, kräftige Stacheln trägt. Im unteren Teil zwei außerordentlich große Stacheln, unten eine Partie mit kleineren, borstenartigen Stacheln, die den Vorderrand abschließen.

II. Maxille. zweilappig, der obere Teil verlängert, Vorderrand gerade, unterer Teil ziemlich kurz, konvex.

Mundteile in der Hauptsache mit der Varietät *Sumbaeae Hoek*, 1913 übereinstimmend.

Der Vollständigkeit halber können Angaben über die Segmentanzahl der Cirren geliefert werden, da sich darüber bisher nur unvollständige Aufzeichnungen finden.

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 5 mm</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Größe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam.</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Alter Fundort: Philippinen.

Variatät 7 *Darwin*, 1854.

Von dieser Varietät lag mir ein Exemplar vor, das mit *Darwins* Angabe: die Schale sei dünn und die Rippen nicht so hervortretend wie bei Varietät 6, der Varietät 7 nahesteh, übereinstimmt. Das Orificium war weiter und die Längsrippen auf der Schale der Anzahl nach geringer als bei Varietät 6. *Sectum* für die Varietät charakteristisch, nicht so stark transversal verlängert wie bei Varietät 6, die basitergale Ecke mehr abgeschnitten; Adductorhöhe, wie auch der Zahn bei der rostralen Ecke stark entwickelt (*Darwin* 1854, Pl. XIV, Fig. 6 r). Tergum mit dem der vorhergehenden Varietät übereinstimmend.

Carino-rostraler Diameter: 6 mm.

Mundteile mit jenen der vorhergehenden Varietät übereinstimmend.
Die längeren Cirren ziemlich lang, mit vier Borstenpaaren am Vorderrand der Segmente, von denen das oberste Paar wohlentwickelt ist.

Alter Fundort: Philippinen.
C. W. Aurivillius. R. M.

Genus Pyrgoma Leach, 1817:

Pyrgoma Leach, 1817.
Boscia Ferussac, 1822.
Savignian Leach, 1825.
Megatreme Leach, 1825.
Adna Leach, 1825.
Daracia J. E. Gray, 1825.
Cresia de Blainville, 1816—1830.
Duplocona Schütten, 1838.
Nobia G. B. Sowerby junior, 1839.
Pyrgoma Darwin, 1854. und späterer Verfasser.

Diagnose: Schale aus einem einzigen Stück gebildet, Basis schalenförmig oder zylindrisch, auf Korallen befestigt (Darwin 1854).

Verbreitung: Auf Korallen, besonders in tropischen Meeren.

Pyrgoma milleporae Darwin, 1854.

(Textfig. 79.)

Pyrgoma milleporae Darwin, 1854, Weitner, 1897 a, Gravel, 1905 a.

Diagnose und Beschreibung bei Darwin 1854, Seite 367.

Komplettierende Beschreibung: Mundteile: Figuren fehlen für diese Art.

Palpus: Vorderrand unten undeutlicher markiert.

Mandibel mit fünf Zähnen und einer unteren Ecke. Die unteren Zähne doppelt.

I. Maxille mit geradem Vorderrand. Der Einschnitt im oberen Teil ist äußerst unbedeutend, was beim Genus Pyrgoma im allgemeinen der Fall zu sein scheint.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 12 mm</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 12 mm</td>
<td>8</td>
<td>15</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 12 mm</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>
Textfig. 79. *Pyrgoma milleporae* D.

a Labrum, Vergr. 34'9 mal. b Palpus, Vergr. 60 mal. c Mandibel, Vergr. 100 mal. d l. Maxille, Vergr. 160 mal. e II. Maxille, Vergr. 98 mal.

Cirrus I mit sehr verschieden langen Rami. Cirrus II und III von ungefähr gleichem Ausschen, mit kurzen, etwas verschieden langen Rami. Übrige Cirren lang, mit vier bis fünf Borstenpaaren am Vorderrand der Segmente. Nach Darwin soll *P. milleporae* nur drei Borstenpaare besitzen,

Alter Fundort: Philippinen.

Neue Fundorte: Japan, Bonininseln, Ogasawara, Port Lloyd. 5 m tief. Auf Millepora. August 1914. S. Bock. U. M.

Sundainseln. Auf Millepora. C. W. Aurivillius. U. M.

Pyrgoma grande (G. B. Sowerby junior, 1839).

Nobia grandis G. B. Sowerby junior, 1839.

Creusia grandis Chenu.

Pyrgoma grande Darwin, 1854, Weltner, 1897 a, Gruvel, 1905 a, Hoek, 1913.

Diagnose bei Darwin 1854, Seite 365.

Beschreibung bei Darwin 1854 und Hoek 1913, Seite 258.

Komplettierende Beschreibung: Mundteile von Hoek 1913 beschrieben.

Labrum fand ich mit unbedeutender Zahnbewaffnung versehen. Nach Hoek sind die Zahne zahlreich. Dies scheint hier also etwas variabel zu sein.

Mandibel von ungefähr gleichem Ausschen wie die der vorhergehenden Art. Auch hier konnte ich fünf deutliche Zahne beobachten.

I. **Maxille** mit geradem Vorderrand und äußerst unbedeutendem Einschnitt oben.

II. **Maxille** zweilappig. Oberer Lobus mit geradem Vorderrand, unterer Lobus konvex, wie bei *P. millepora*.

Alter Fundort: Ostindischer Archipel und Singapore.

Neue Fundorte: Japan, Bonininseln, Ogasawara, Port Lloyd. Juli 1914. S. Bock. U. M.

Subfamilie **Tetraclitinae** n. subfam.

Verbreitung: In der Littoralregion der tropischen und gemäßigten Meere.

Typus: *Tetraclita porosa* Gmelin, 1789.
Genus *Tetraclita* Schumacher, 1817.

Tetraclita Schumacher, 1817.
Conia Leach, 1817.
Asemus Ranzi, 1817.
Polytrema Vérusac, 1822.
Lepas Gmelin, 1789.
Balanus Bruguière, 1789, Lamarck 1818.

Subgenus *Tetraclita*.

Diagnose: Ausgewachsene Tiere mit mehreren Reihen Poren in der Schale.

Textfig. 80. *Tetraclita purpurascens* (Wood).

(a) Rechtes Scutum, Innenseite, Vergr. 24 mal. (b) Rechtes Tergum, Innenseite, Vergr. 24 mal.

Tetraclita purpurascens (Wood, 1815).

(Textfig. 80).

Lepas purpurascens Wood, 1815.
Balanus plicatus Lamarck, 1818.
Balanus punctatus et plicatus Chenu.
Conia depressa J. E. Gray. 1843.
Tetraclita purpurascens Darwin, 1854, Wettiner, 1897 a, Gruvel, 1905 a.

Von dieser Art lagen mir zwei Exemplare aus einem neuen Lokal, dem südlichen Atl. Ozean (nicht näher angegeben) vor. Diese stimmen hinsichtlich der Opercularplatten mit der Hauptform überein. Und auch ein
Vergleich der inneren Teile ergab, soweit ich an den defekten Exemplaren erkennen konnte, keine wesentlichen Verschiedenheiten.

Textfig. 81. Tetracūta purpurascens chinensis n. subsp.
a Mandibel, Vergr. 161 mal. b I. Maxille, Vergr. 225 mal. c II. Maxille, Vergr. 161 mal.

Tetracūta purpurascens chinensis n. subsp.
(Textfig. 81, 82, Taf. III, 12).

Diagnose: Schale abgeplattet, schmutzig-weiß, mit wohlentwickelten Rippen. Auf der Mitte der Platten größere Gruben, unten durch die Ver-

Textfig. 82. Tetractita purpurascens chinensis n. subsp.
a Rechtes Scutum, Außenseite, Vergr. 34 mal. b Rechtes Scutum, Innenseite, Vergr. 34 mal. c Rechtes Tergum, Innenseite, Vergr. 34 mal.
CIRRIPEDEN- STUDIEN.

Parietes haben, wie schon erwähnt, auf der Mitte große Aushöhllungen, deren Mündungen langgestreckt und deren beide Seiten von stark entwickelten Rippen begrenzt sind, die sich nach unten zu vereinigen und ein Dach über den Aushöhllungen bilden; die Aushöhllungen durchbohren die Parietes nicht, sondern haben deren äußere Lamina als Boden. Es ist schwer, sich mit Bestimmtheit darüber zu äußern, ob diese Aushöhllungen dadurch entstanden, daß die in diesen Gruben angetroffenen Spiroboth-Individuen, dort wo sie sich befestigt hatten, das Aufkommen von Rippen verhinderten. Doch scheint mir dies wenig wahrscheinlich.

Scutum transversal verlängert, mit deutlichem Articularkiel und schwach ausgebildetem Adductorkiel. Abweichend von der Hauptform dadurch, daß die Platte etwas gefaltet ist. Eine deutliche Falte zieht vom Apex zur Mitte des Margo basalis, der dadurch etwas gewellt wird; Einschnitt in der Nähe der rostralen Ecke.

Tergum dagegen jenem der Hauptform ähnlich, schmal, mit breitem und abgerundetem Sporn, der von der basisontalen Ecke nicht getrennt ist. Cristae für den Musculus depressor deutlich entwickelt.

Mundteile: Labrum gezähnt, mit mittlerer Einbuchtung.

Palptus von gewöhnlichem Aussehen.

Mandibel mit vier Zähnen, die, besonders Zahn 4, Nebenzähne tragen. Unter Zahn 4 eine mit verschieden großen Zähnen besetzte Partie, die von einem langen Stachel abgeschlossen wird.

I. Maxille mit oberem Einschnitt.

II. Maxille zweilappig, mit Einschnitt auf der Mitte des Vorderrandes.

Segmentanzahl der Cirren im Vergleich zu jener der Hauptform:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 10 mm</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>Hauptform Carino-rostr. Diam. 20 mm</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diam.</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Fundort: China, Hongkong. Auf Tetractila porosa. U. M.
Tetraclita divisa n. sp.

(Textfig. 83; Taf. III*., 11.)

Diagnose: Schale abgeplattet, mit Längsrippen, ohne Gruben. Scutum gefaltet, transversal stark verlängert; Margo basalis ohne Einbuchtung.

Mundteile: Labrum mit einer schwachen Einbuchtung auf der Mitte, zu beiden Seiten je zwei bis drei Zähne. Feine Haare in der Einbuchtung und zwischen den Zähnen.

I. Maxille mit deutlichem Einschnitt, mit feinen Borsten. Unterer Teil des Vorderrandes mit kleineren Borsten.

II. Maxille mit konkavem Vorderrand. In der Mitte eine borstenlose Partie.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carinrostr. Diam. 8.5 mm</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Höhe 2 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Zool. Bidrag, Uppl. Ed. 7. 24

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Fundort: Sumatra, Koningsinne-Bay. 1891. C. W. Aurivillius. R. M. Westküste Sumatras. 1891. C. W. Aurivillius. R. M.

Nordwachter, Java see. Am Strande. C. W. Aurivillius. R. M.

Tetraclita porosa viridis Darwin, 1854.

Tetraclita porosa viridis Darwin, 1854. Weltner, 1897 a; Gruvel, 1905 a; Krüger, 1911 a, 1914.

Tetraclita squamosa squamosa Pilsbry, 1916.

Mundteile, von Krüger 1911 a abgebildet, zeigen zwischen den Subspecies geringe Verschiedenheiten.

Segmentanzahl der Cirren, wie Darwin hervorhebt, außerordentlich variabel (s. Tabelle), was auch ich fand. Doch beruht diese Variation in vielen Fällen auf einer Regeneration der Cirren.
CIRRIPEDEN-STUDIEN. 365

<table>
<thead>
<tr>
<th>Größe des Individuums und Lokal</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 24 mm</td>
<td>13</td>
<td>20</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Gasparsund</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Carino-rostr. Diam. 23 mm</td>
<td>12</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Billiton, 2 Ex.</td>
<td>13</td>
<td>19</td>
<td>12</td>
<td>14</td>
<td>25</td>
<td>28</td>
</tr>
</tbody>
</table>

Tetraclita porosa rufotincta PILSBRY, 1916.

Diagnose: Schale mit kurzen Rippen, dick, mit undeutlichen Suturen. Poren zahlreich. Farbe bleich rosa. Scutum mit zahlreichen Zähnen längs des Margo occludens; Farbe der Innenseite schwach rot. Tergum mit stark hervorstehender basicarinaler Ecke; Margo basal is beinahe winkelrecht gegen die carinale Seite des Sporns.

Diese Varietät wurde von PILSBRY 1916 als neu aufgestellt. Es ist schwer zu entscheiden, ob sie zu einer von DARWINS Varietäten gerechnet werden kann, da sich keine Angaben über die Fundorte der einzelnen Varietäten finden.

Auch die inneren Teile zeigen keine wesentlichen Unterschiede. Die Segmentanzahl der Cirren ist ebenfalls variabel.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diameter</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>26.5</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
</tr>
</tbody>
</table>

Neue Fundorte: Madagaskar, Tenerive. Auf Klippen. 6./1. 1912. W. KAUDERN. R. M.

Madagaskar, Tamatave, Korallenriff. 28./1. 1912. W. KAUDERN. R. M.

Subgenus _Tessapora_.

Subgenus _Tessapora_ PILSBRY, 1916.

Diagnose: Parietes mit einer einzigen Reihe Poren.

Über dieses Merkmal sagt DARWIN 1854, Seite 336 in Hinsicht auf _T. rosea_: „The circumstance of there being only a single row of parietal
tubes is not so important a difference as might at first be thought, in as much as in the other species, during their quite early youth, the walls are formed of only a single row of tubes or pores.4 Dieser Charakter scheint mir aber dennoch voll hinreichend zu sein, diese Gruppe von Tetracilita zu charakterisieren, wenigstens was die ausgewachsenen Individuen betrifft. Exemplare anderer Tetracilita-Arten, die die gleiche Größe wie mein Exemplar von T. Wiréni n. sp. hatten, besaßen schon mehrere Reihen Poren. Ein kleines Individuum von T. porosa viridis (Carino-rostr. Diam. 3.5 mm) hatte bereits drei Reihen Poren.

Tetracilita Wiréni n. sp.

(Textfig. 84; Taf. III* 13, 14.)

Diagnose: Schale weiß, konisch, mit unebenen Parietis, die der Länge nach gefaltet sind. Radien klein. Seutum dünn, dreieckig, außen mit Zuwachslinien; Adductorenkiel vorhanden, oben mit dem wenig vorspringenden Articularkiel nicht vereinigt; Articularrinne außerordentlich schmal. Tergum langgestreckt, mit spitzigem Apex; Sporn lang und schmal, mit der basiscutalen Ecke vereinigt; Articularrinne klein, Articularkiel wenig vorspringend; deutliche Cristae entlang des ganzen Margo basalis, eine direkte Fortsetzung auf der einen Seite des Sporns bildend.

Textfig. 84. *Tetraclita Wiréni* n. sp.
Labrum, Vergr. 81 mal. b Palpus, Vergr. 81 mal. c Mandibel, Vergr. 81 mal. d I. Maxille, Vergr. 110 mal. e H. Maxille, Vergr. 110 mal. f Rechtes Scutum, Innenseite, Vergr. 9 mal. g Linkes Tergum Innenseite, Vergr. 9 mal. h Linkes Tergum, Außenseite, Vergr. 9 mal.

Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diam.</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6.5</td>
</tr>
</tbody>
</table>

II. Maxille mit konkavem Vorderrand, ohne Borsten auf der Mitte.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino.rostr. Diam. 15 mm</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fundort: Westküste Sumatras. September 1891. C. W. Aukivillius.

R. M.

Subfamilie Chelonibiinae PILSBRY, 1916.

Verbreitung: Warme und gemästigte Meere, auf Walen, Schildkröten, Crustaccaen und Mollusken.
Genus *Chelonibia* Leach, 1817.

Chelonibia Leach, 1817.
Coronula Lamarck, 1818, Ranzani, 1820.
Astrolepas Gray, 1825.
Chelonibia Darwin, 1854.
Chelonibia Pilsbry, 1916.

Chelonibia testudinaria (Linne, 1758).

(Textfig. 85.)

Lepas testudinaria Linne, 1758, Poli, 1795.
Verruca testudinaria Ellis, 1758.
Balanus polythalamius Bock, 1778.
Coronula testudinaria Ranzani, 1820, de Blainville, 1824.
Chelonobia Savignii Leach, 1824.
Coronula testudinaria Chenu, 1825.
Astrolepas rotundarius J. E. Gray, 1825.
Chelonobia testudinaria Pilsbry, 1916.

Diagnose: bei Gruvel, 1905 a, Seite 267.

Beschreibung bei Darwin 1854, Seite 392, Krüger 1911 a, Seite 57 und Pilsbry 1916, Seite 264.

Labrum mit Einschnitt auf der Mitte, zahlreiche Zähne zu beiden Seiten.

Mandibel mit fünf spitzigen Zähnen, von welchen Zahn 2 und 3 doppelt sind. Unter Zahn 5 eine pektinierte, wenig herausstehende Ecke.

I. Maxille mit geradem Vorderrand. Stacheln der unteren Ecke kleiner und gefiedert.

Die längeren Cirren mit zwei Paar langen Borsten am Vorderrand der Segmente.

Verbreitung: Tropische und gemäßigte Meere.
20./12. 1891. P. Dusén. R. M.
Florida. E. Lönnberg. R. M.

Textfig. 85. Chelonibia testudinaceae (L.).
* a Labrum, Vergr. 75 mal. b Palpus, Vergr. 26 mal. c Mandibel, Vergr. 915.

Subfamilie Coronulinae Gray, 1825.

Chelonidades Gray, 1825.
Coronulidae Leach, 1825.
Subfam. Balaninae Sektion II Darwin, 1854.

Komplettierende Diagnose: Sechs Platten. Scutum und Tergum, wenn vorhanden, einander nicht bedeckend und auch nicht gelenkartig

Verbreitung: Alle Meere. Auf Walen, Schildkröten, Sirenia, Fischen u.a.

Genus Coronula Lamarck, 1802.

Coronula Lamarck, 1802.
Diadema Schumacher, 1817, Ranzani, 1817.
Cetopirus Ranzani, 1817.
Polylepas Klein, Gray, 1825.
Coronulites Parkinson, 1833.
Polylepas Mörch, 1852.
Cetopirus Mörch, 1852.
Coronula Darwin, 1854, und spätere Verfasser.

Coronula diadema (Linne, 1767).
(Textfig. 86.)

Lepas diadema Linne, 1767, Chemnitz.
Lepas balaenaris O. F. Müller, 1776.
Balanus balaena da Costa, 1778.
Lepas balaenaris O. Fabricius, 1780.
Balanus diadema Bruguière, 1789.
Lepas balaenaris Gmelin, 1790.
Diadema vulgaris Schumacher, 1817.
Diadema cardium Ranzani, 1818.
Coronula diadema Lamarck, 1818.
Polylepas (Diadema) Kleinii Gray, 1825.
Coronula diadema Leach, 1824.
Coronula biseoyensis van Beneden, 1870.
Diadema Japonica van Beneden, 1870.
Diadema Californica van Beneden, 1870.

Textfig. 86. Coronula diadema (L.).

Diagnose bei Gruvel 1905 a, Seite 273.

Labrum mit Einschnitt in der Mitte, mit mehr oder minder deutlichen Zähnen und Haaren auf der Seite. Seitenteile hoch.
Palpus etwas spitzig, mit konkavem, borstentragenden Oberrand und konvexem Unterrand, mit langen Borsten vorne am Rande, hinten in einer über dem Rande an der Außenseite liegenden Linie.

I. Maxille gegen den Vorderrand zu etwas schmäler werdend; Vorderrand gerade, mit oberem Einschnitt. Über dem Einschnitt große, darunter kleinere Stacheln.

C. Lindquist. A. Jonson. R. M.

Genus Tubicinella Lamarck, 1802.

Tubicinella Lamarck, 1802.
Coronula De Blainville, 1824.
Tubicinella Darwin, 1854 und spätere Verfasser.

Tubicinella major Lamarck, 1802.

(Textfig. 87.)

Tubicinella major et minor Lamarck, 1802.
Lepas trachealis Shaw, 1806.
Lepas tracheaeformis Wood, 1815.
Tubicinella anulata Ranzani, 1818.
Tubicinella balneatum Lamarck, 1818. Chenu, Sowerby.
Tubicinella balaenae Oken, 1821.
Tubicinella lamarckii Leach, 1824.
Coronula tubicinella De Blainville, 1824.
Tubicinella striata Stebbing, 1910.
Tubicinella major Pilsbry, 1916.

Textfig. 87. Tubicinella major Lamarck.

a Labrum, Vergr. 52 mal. b Palpus, Vergr. 56 mal. c Mandibel, Vergr. 52 mal. d I. Maxille, Vergr. 67 mal. e II. Maxille, Vergr. 52 mal.

Labrum mit Einschnitt in der Mitte, fein behaart, ohne Zähne.

I. Maxille vorne schmäler werdend, mit deutlichem Einschnitt im oberen Teil unter den obersten Stacheln. Der von Darwin erwähnte untere Einschnitt ist unten mehr oder minder undeutlich. Unterrand charakteristisch durch seine stark konvexe Form.

Die längeren Cirren mit einem Borstenbündel auf dem konvexen Teil des Vorderrandes.

Fundort: Südgeorgien. R. M.

Genus *Xenobalanus* Steenstrup, 1851.

Siphonicinclla Steenstrup, 1852.

Xenobalanus Steenstrup, 1851, 1852, Darwin, 1854, und späterer Verfasser.

Xenobalanus globicipitis Steenstrup, 1851.

(Textfig. 88.)

Labrum behaart, mit Einschnitt in der Mitte, ohne Zähne.

Palpus vorne schmäler werdend, mit kürzeren Borsten längs des Oberrandes, längeren an der Spitze und längs des sacculierten Unterrandes.

Mandibel breit, mit fünf kleinen Zähnen und einer breiten, pektinierten unteren Ecke.

I. Maxille mit geradem Vorderrand.

Genus *Platylepas* Gray, 1825.

Platylepas Gray, 1825.

Columellina Bivona, 1832.

Platylepas Darwin, 1854 und späterer Verfasser.
Diagnose bei Pilsbry 1916, Seite 284.
Verbreitung: Tropische und gemäßigte Meere, auf Schildkröten, Seeschlangen und Fischen.

Textfig. 88. Xenobalanus globicipitis Stenstrup.
a Labrum, Vergr. 54 mal. b Palpus, Vergr. 36 mal. c Mandibel, Vergr. 54 mal. d 1. Maxille, Vergr. 98 mal. e II. Maxille, Vergr. 54 mal.

Platylepas decorata Darwin, 1854.
(Textfig. 89.)

Platylepas decorata Darwin, 1854, Weltner, 1897 a, Grvel, 1905.

Diagnose und Beschreibung bei Darwin 1854, Seite 429.
Komplettierende Beschreibung: Wie Darwin hervorhebt, liegt das bedeutendste äußere Merkmal dieser Art darin, daß die Schale nicht wie
bei den übrigen Arten querstreifig ist. Dies war auch bei den mir zur Verfügung stehenden Arten der Fall. Doch kann ein kleiner Zusatz gemacht werden, nämlich daß dies nicht für die Radian der Platten gilt, denn diese weisen eine deutliche Querstreifung auf.

Textfig. 89. *Platylepas decorata* D.

a Labrum, Vergr. 87 mal
b Palpus, Vergr. 87 mal
c Mandibel, Vergr. 320 mal
d I. Maxille, Vergr. 320 mal
e II. Maxille, Vergr. 150 mal.

Parietes gewöhnlich von verschiedener Größe, wodurch der Umfang nicht immer regelmäßig wird.

Hinsichtlich der äußeren Teile verweise ich im übrigen auf Darwins Beschreibung.
Größe:

<table>
<thead>
<tr>
<th>Carino-rostr. Diam.</th>
<th>Höhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2,5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Mundteile von Krüger 1911b für *P. bissexlobata (hexastylus)* abgebildet. Dagegen fehlen Figuren der vorliegenden Art.

Labrum mit relativ weitem Einschnitt in der Mitte. An jeder Seite des Einschnittes drei Zähne, ein vierter Zahn weiter seitlich.

I. Maxille mit geradem Vorderrand, der im oberen Teil einem deutlichen Einschnitt aufweist.

Segmentanzahl der Cirren:

<table>
<thead>
<tr>
<th>Größe des Individuums</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carino-rostr. Diam. 4 mm</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Cirrus I mit verschieden langen Rami, ein Ramus 2/3 des anderen. Cirrus II und III kurz, ebenfalls mit, wenn auch in geringem Grade, ungleich langen Rami. Übrige Cirren lang, mit 3 Paar Borsten am Vorderrand der Segmente.

Verbreitung Stiller Ozean.

Bowie, U. M.
LITERATURLVERZEICHNIS.

1906 d. Annandale N., Natural History notes from the R. I. M. S. Ship „Investigator“. Serie III Nr. 13. Two new Barnacles dredged in 1905—06. — Ibid.

1907 b. Annandale N., A second species of Dichelaspis from Bathynomus giganteus. — Ibid.

1910 c. Annandale N., Notes on the Cirripedia Pedunculata in the Coll. of the Univ. of Copenhagen. — Ibid.

Zool. Bidrag, Uppsala, Bd. 7 25
1910 c. **Annamdale N.,** Two Barnacles of the genus Dichelaspis new tho Indian Seas. — Ibid.

1911 a **Annamdale N.,** Note on a Rhizocephalous Crustacean from fresh water and on some specimens of the order from Indian Seas. — Ibid, Vol. VI. Calcutta 1911.

1911 b. **Annamdale N.,** Crustacea. On the distribution of the different forms of the genus *Ib*da. — Ibid.

1895 b. Claus C., Beiträge zur Kenntnis der Süßwasser-Ostracoden. — Ibid.

1854. Darwin Ch., A Monograph a the subclass Cirripedia. 2. The Balanidae Verrucidae etc. London 1854.

1875. Dohrn, Ursprung der Wirbelthiere und das Princip des Funktionswechsels. Leipzig 1875.

1897 b. Gravel A. Sur quelques points de l'anatomie de la Tetractilia porosa. — Ibid.

1899 c. Gravel A. Note sur la morphologie des pièces du test chez les Cirripèdes sessiles. — Ibid.

1904 c. Gravel A., De quelques phénomènes d'ovogénèse chez les Cirripèdes. — Ibid.

1907 b. Gravel A., Note préliminaire sur les Cirripèdes Pédonculés recueillis par l'expédition antarctique allemande du „Gauss“. — Ibid.

1874 b. Koosmann, Suctoria und Lepadidae. — Ibid.

1861 b. Lilljeborg W., Supplément du Mémoire sur les genres Liriope et Pellogaster. — Ibid.

1870. Sars M., Bidrag till kundskap om Christiania fjordens fauna. II.Crustacea. — Nyt Magasin for Naturvidenskaberne XVII. Christiania 1870.

1835. Thompson J. V., Discovery of the Metamorphosis in the second type of the Cirripedia viz. the Lepades etc. — Philosophical Transactions Royal Society of London. London 1835.

Errata.

Auf Seite 83, Zeile 16 v. o. statt Limnadia lies Limnadia.
Auf Seite 95, Textfig. 10 statt Labium lies Labrum.
Auf Seite 97, Textfig. 12 statt y lies 4.
Auf Seite 117, Zeile 7 v. u. statt Textfig. 12 a, b lies Textfig. 19 a, b.
Auf Seite 148, Zeile 17 v. u. statt Temnespis lies Temnaspis.
Auf Seite 154, Zeile 2 ergänze respektive Unterfamilie.
Auf Seite 159, Zeile 8 v. o. lies barnacles, they have no near relationship.

Auf Seite 163, Zeile 20 v. u. statt Pollicipes mitella LINNÉ, 1767 lies Pollicipes mitella (LINNÉ, 1767).
Auf Seite 204, Zeile 7 v. u. statt Scalpellum ventricosum (HOEK, 1907) lies Scalpellum ventricosum HOEK (1907) 1913.
Auf Seite 377, Textfig. 89 statt Mandibel = c lies Mandibel = c.
GEMEINSAME BEZEICHNUNGEN.

cu = Cuticula des Körpers.
chl = Cuticula des Harnleiters.
bs = Basalmembran.
el = elastische Fäden.
hl = Harnleiter.
hk = Harnkanal.
end = Endsäckchen.
tr = Trichterzellen.
m = Muskeln.
ex = Exkretkörper.
gr = Grenze zwischen Harnkanal und Harnleiterzellen.
hke, hle, ende, ke = Harnkanal-, Harnleiter-, Endsäckchen- und Körperepipethel.
bg = Bindegewebe.
l = Lakune.
gr = Grenze zwischen Harnkanal und Harnleiter.
TAFEL I.

Fig. 1. 2. Balanus balanoides. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Längsschnitt. Vergr. 480 mal.
Fig. 3. Chthamalus challengeri. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Querschnitt. Vergr. 1000 mal.
Fig. 4. Balanus crenatus. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Längsschnitt. Vergr. 480 mal.
Fig. 5. Verruca strumia. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Längsschnitt. Vergr. 480 mal.
Fig. 6. Scalpellum scalpellum. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Längsschnitt. Vergr. 480 mal.
Fig. 7. Alcippe lampas. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Längsschnitt. Vergr. 1000 mal.

TAFEL II.

Fig. 1. Balanus balanoides. Zellen des Endäckchens während der Exkretion. Vergr. 480 mal.
Fig. 2. Balanus balanoides. Harnkanalepithel. Vergr. 1000 mal.
Fig. 3. Balanus crenatus. Harnleiter im Längsschnitt. Vergr. 308 mal.
Fig. 4. Chthamalus challengeri. Übergang des Endäckchens in den Harnkanal mit dem Trichter im Längsschnitt. Vergr. 640 mal.
Fig. 5. Chthamalus challengeri. Harnleiter im Längsschnitt. Vergr. 480 mal.
Fig. 6. Scalpellum scalpellum. Harnleiter im Längsschnitt. Vergr. 308 mal.
Fig. 7. Scalpellum scalpellum. Zellen des Endäckchens während der Exkretion. Vergr. 480 mal.
Fig. 8. Alcippe lampas. Zellen des Endäckchens während der Exkretion. Vergr. 480 mal.
Fig. 9. Alcippe lampas. Harnkanalzellen. Vergr. 480 mal.

TAFEL III.

Fig. 1. Oxynaspis Bocki n. sp. Von der Seite, zirka 3,8/i.
Fig. 2. Oxynaspis Aurivillii Stebbing. Von der Seite, zirka 5,9/i.
Fig. 3. Heteralepas typica n. sp. Von der Seite, zirka 1,2/i.
Fig. 4. Heteralepas japonica (C. W. Auriv.) Von der Seite, zirka 1,9/i.
Fig. 5. Poecilasma lenticula C. W. Auriv. Von der Seite, zirka 1,6/i.
Fig. 6. Poecilasma amygdalum madagascariense n. subsp. Von der Seite, zirka 1,6/i.
Fig. 7. Chthamalus Appellöfi n. sp. (rechts) zusammen mit Octomeris brunnea (links) auf Pollicipes mitella (L.). Von oben zirka 1,12/i.
Fig. 8. Octomeris intermedia n. sp. auf Pollicipes mitella (L.). Von oben, zirka 0,96/i.
Fig. 9. Balanus anamyllis D. Von oben, zirka 0,8/i.
Fig. 10. Balanus quadrivittatus Hoek. Von oben, zirka 2,16/i.
Fig. 11. Tetraclita divisa n. sp. Von oben, zirka 1,9/i.
Fig. 12. Tetraclita purpurascens chinensis n. subsp. Von oben, zirka 1,64/i.
Fig. 13. Tetraclita Wiréni n. sp. Von oben, zirka 2,4/i.
Fig. 14. Tetraclita Wiréni n. sp. Von unten, zirka 3,2/i.