GENERAL
Aculeate wasps and bees of the Ainsdale–Formby sand dunes on the Lancashire coast compared with other northern sites. 1
Aggregation behaviour in Philonthus cognatus at Burnt Wood, Staffordshire 68
Aggregation of over one million 16-spot ladybirds in a Bramble hedge, and blushing" in two specimens. 89
Agrilus simuatus new to Wales 41
Announcements:
British Entomological & Natural History Society Research Fund rear cover part 2
Cornish Large Blue records—appeal for information 134
Instructions to authors rear cover part 1
Professor Hering Memorial Research Fund rear cover part 2
Society's public liability insurance rear cover part 3
Theft of butterflies from the Society's collection 117
Annual Exhibition reports for 1998
Actinaria 186
Arachnida 186
British butterflies 142
British macrolepidoptera 147
British microlepidoptera 152
Coleoptera 169
Dictyoptera 184
Diptera 165
Foreign lepidoptera 158
Hemiptera 179
Hymenoptera 180
Illustrations 186
Isopoda 186
Neuroptera 185
Orthoptera 184
Plecoptera 185
Raphidioptera 186
Annual UK dipterists meeting 1998 26
Book notice:
Checklist of lepidoptera recorded from the British Isles 192
Book Reviews
Aquatic insects of northern Europe: a taxonomic handbook: Volume 2 52
Care and conservation of natural history collections 190
Checkered beetles 53
Collembola of Fennoscandia and Denmark: part 1. Poduromorpha 189
Expedition field techniques: Insects and other terrestrial arthropods 188
Families of Diptera of the Malay Archipelago 187
Hoverflies of Surrey 55
Insect pests of food premises 191
Somerset hoverflies 53
Breeding record of Seconotopia excisa 137
Buchanianella continua established in Britain 221
Call for assistance with a new survey of the social wasps of Britain and Ireland for 1999. 2000 31
Catharosia pygmaea: a second record in Essex 88
Creagpluhhia mallochorum gen. and sp. n., a remarkable new Scottish gnat with a discussion of its relationships. 121
Crossoexus vagabundus in Wales 25
Editorial
Articles still required 56
Instructions to authors 56
Society's website 56
Entomological surveys of vertical river flood defence walls in urban London: brownfield corridors: problems, practicalities and some promising results 193
Field Meetings of the BENHS
California Country Park, Berkshire 16 June 1996 42
Dinton Pastures, Berkshire 17 May 1997 43
Prescombe Down Nature Reserve, Wiltshire and Melbury Down, Dorset 21 June 1997 45
Mark Hall Estate, Essex 2 August 1997 47
Colaton Raleigh Common, Devon 48
Denbies Hillside & Ranmore Common, Surrey 20 June 1998 49
Roberough Wood, Great Torrington, Devon 4 July 1998 50
Flanders Moss NNR, Perthshire 1 August 1998 51
Gonicerus acutangulatus in a house at Ham, Surrey 91
Humming-bird hawk moth, Macroglossum stellatarum, probing the ground 224
Hypius quercentinus new to Gloucestershire 41
Indoor Meetings of the BENHS 7 April 1998 34
12 May 1998 34
9 June 1998 35
14 July 1998 36
8 September 1998 38
13 October 1998 40
10 November 1998 241
8 December 1998 241
12 January 1999 242
23 February 1999 243
16 March 1999 244
13 April 1999 245
11 May 1999 246
15 June 1999 247
Micropygus vagans, a New Zealand fly in the British Isles 215
Mordellistena secreta, a species new to Britain 227
Nest desertion by blackbirds following defoliation of an ash tree by sawfly larvae 13
New aberration of the Clouded Yellow Colias croceus 93
New locality for Cosmotettix caudatus, with a note on its ecology 225
Notes on the habitats of Hebrus ruficeps 235
Notes on the occurrence of the planthoppers Reptalus panzeri and Astira clavicornis 239
Nysius seneconis feeding in large numbers on Guernsey flea beetle 229
Nysius seneconis in Norfolk 141
Observations of some uncommon dung beetles 16
Observations on rearing Luffia spp under controlled environmental conditions, with taxonomic notes 17
Observations on the "guest ant" Formicozusat nmitibus in nests of the wood ants Formica rufa and F. lugubris in 1998 138
Oedaca ringdahli in northern England 231
Officer’s reports for 1998 113
Council’s report 104
Curator’s report 116
Editor’s report 118
Librarian’s report 114
Professor Hering Memorial Research Fund 113
Treasurer’s report 106
Ophiomyia gnaphalii in Antennaria dioica in Scotland 11
Orange Upperwing, Jodia croceago, survey autumn 1999 / spring 2000 135
Pleurophorus caesus imported into Cambridgeshire 33
Presidential Address — part 1 report 119
Procos granicollis discovered in Surrento 230
Ptolemaghus varicornis in North Devon 234
Rearing Daulica tripictellra 29
Recent British records of Gymnosoma nitens and some comments on its status in Britain 140
Record of Ectennius rubicornis and its anthomyiid cleptoparasite breeding in southern Scotland 232
Scarce wood-decay beetles in a river floodplain farmland landscape in the upper Thames valley 213
Specialist Hemiptera associated with mistletoe 237
Stenamusa debilen and Lasius sabulatun new to Lancashire 92
Tawny mining bee, Andrena fulva, at a South Wales field site and its associated organism: Hymenoptera, Diptera, Nematoda and Strepsiptera 57
Terrestrial invertebrates in site assessment: a local perspective 96
Thomas Vernon Wollaston and the Madeiran butterfly fauna — a re-appraisal 69

CONTRIBUTORS
Agassiz, D. J. L. 34
Alexander, K. N. A. 41, 141, 165
169, 179, 213, 230, 246
Allen, A. J. W. 170
Archer, M. E. 1, 180
Badman, J. S. 180
Bailey, K. E. J. 142, 158, plate 1
Baker, B. R. 147
Baker, P. J. 147
Barnard, P. 185, 248
Barnett, R. 147, 152
Barrington, R. D. G. 142, plate 1
Bland, K. P. 11, 51, 153, 232
Booth, R. G. 171
Bowdrey, J. P. 47, 172, 180, 181
Brereton, T. 39
Briggs, J. 237
Britton, M. R. 153
Brooks, S. 244
Brotheridge, D. 147, 153
Butcher, A. G. J. 147 plate II
Butlerfield, I. 96
Callow, N. A. 241, 243
Chandler, P. J. 42, 43, 53, 121, 166, 215
Cheke, R. A. 13
Clancy, S. P. 147, 153, plate II
Clarke, J. 147
Clements, D. 26, 52
Collingwood, C. A. 92
Collins, G. A. 137, 166, 181, plate II
Cook, R. R. 147, plate II
Corley, M. F. V. 158, plate II
Crossey, R. 231
Cuming, N. St. J. 172
Dawson, J. 147, 153
Acmaeodera cylindrica 175
A. degener quattuordecimpunctata 175
A. nigellata 175
A. rubromaculata 175
Acmaeoderella adpersula 175
A. coarctata 175
A. moroderi 175
Acrotrichis lucidula 171
Acupalpus consputus 179
Acyclophorus wagenschieberi 176
Adalia bipunctata 35, 91
A. purpurea 36
Adoncia variegata 202, 210
Agabus conspersus 178
Agapanthia villosoviridescens 45
Agathidium confusum 171
Agonum sp. 37
A. dorsale 68
A. erieci 179
A. piceum 37, 173
Agrius angustulus 48, 175
A. elegans 175
A. laticornus 178
A. pannonicus 42, 174, 213, 214
A. sinuatus 41, 176, 213
A. sulcicollis 174
A. viridis 170
Aleochara verna 176
Amara apricaria 37
A. curta 173
Ampeles balleatus 36, 42
A. cardinalis 37
A. elongantulus 36, 44
A. rufipennis 169
A. sanguinolentus 36, 178
Anacaena bipustulata 178
Anaplophora glabripennis 179
Anaspis septentrioralis 171, 176
Anisodactylus binotatus 42, 179
Anisosticta novemdecimpunctata 44, 91
Anisoxya fuscula 213, 214
Anobium sp. 201
A. punctatum 201
Anomala dubia 173, 178
Anoploleura scutellata 172
Anotylus mutator 177
Anthaxia funeraria 175
A. marmottani hispanica 175
A. millefolii polychloros 175
A. nigritula 175
A. parallela 175
A. scutellaris 175
Anthicus angustatus 177
A. scoticus 177
A. tristis 177
Antherus 190
A. verbasci 36
Anthrhus fasciatus 175
Aphanisticus emarginatus 175
Aphodius equestris 42
A. fimbriarius 234
A. granarius 42
A. porcus 16
A. rufipes 42
Aplocenus pini 173
Atheta hybrida 171
A. parvis 172
A. pervigata 178
Atomaria lohsei 171
A. morio 176
A. scutellaris 171
A. turgida 175
Aulonothroscus brevicollis 172
Badaspia bipustulatus 38
B. dilatatus 44, 173
B. unipustulatus 37, 173
Bagous puncticolus 171
Batrisodes venustus 176
Baris analis 171
B. sclopopae 172
Bembidion flaviatile 179
B. harpaloids 201
B. inustum 175
B. nigropiceum 170, 179
B. quadripustulatum 37, 173, 179
B. virens 170
Biphyllus lunatus 201, 205
Bitoma crenata 214
Blaps macronata 174
Bledius arcticus 170
B. dissimilis 170
Blethisa multipunctata 37, 173
Bostrychus jesuita 179
Brachinus crepitanus 172
Brachygluta pandellei 171
Bradycellus cekkii 177
Broschus cephalotes 38
Bruchela rufipes 175
Bruchidius varius 175
Bruchus rufipes 45, 178
Bytiscus betulae 177
Caenocara sp. 172
C. bovistae 172
Calathus metallicus 176
Calomicrus circumfusus 170
Cardiophorus vestigialis 170
Cassida murraya 174
C. sanguinosa 175
C. vix 45
Cathorimicrocerus attaphilus 175
Catopiformis depressus 172
Cetonia aurata 38
Ceutorhynchus rapae 45
Choleva glauca 172
Chrysolina americana 174, 177
C. oricala 174, 178
C. polita 45
Cicindela sylvatica 173
Cicones undatus 48, 172
Cidnopus minutus 45
Cionus nigritarsis 170
Coccinella magnifica 178
C. septempunctata 30, 91, 174, 202
Coelambus impressopunctatus 44
Colenis immunda 178
Coloboetis haemorrhoidalis 42
Colydium elongatum 174
Conopalus testaceus 213
Copelatus haemorrhoidalis 44
Corticus unicolor 176
Cossorus parallellepipedus 213, 214
Cryptarcha imperialis 178
C. strigata 176
Cryptopephalus aureolus 49, 178
C. biguttatus 175
C. bipunctatus 174
C. hypochaeridus 46
C. nitidulus 177
C. parvulus 177
C. queruci 176
Cryptolaemus montrouzieri 173, 243, 244
Cryptophagus populii 172
Ctesias serra 41, 213, 214
Cymbiodyta marginella 44
Cyphon kongsbergensis 176
Demetrias imperialis 172
Derastes musurus 173
Donacia bicolor 174
D. obscura 177
Dorcatoma dresdensis 171
D. flavicornis 178
D. serra 178
Drilus flavescens 39
Dromius angustus 173
Dryophilus anobioides 174
Dytiscus circumcinctus 170
Endomychus cucineus 45
Enochrus melanopephalus 178
Epiphanis cornutus 37, 170
Epuraea fuscoicollis 176
Euconus duboisii 172
Euoplophyrum confine 202
Euplectus bonvouloiri 172
E. dupontii 172
E. infirmus 172
E. karstenii 172
E. kirbyi 172
E. nanus 172, 76
E. piceus 172
E. punctatus tholini. 176 177
Eurytorus picipes 177
Geotrupes mutator 16
G. pyrenacus 16
G. spiniger 16
G. stercorarius 16
Glischrochilus hortensis 173
G. quadriguttatus 173
Gnathoncus buyssonii 178
Gnorimus nobilis 170, 178
Gnypeta ripicola 171
Grammoptera ustulata 178
G. variegata 175, 176
Graptolebidae bilineatus 170, 178
G. granularis 178
Grypus equiseti 42
Gyrophaena joyi 178
Halacritus punctum 171, 177
Haliphus confinis 202
H. heydeni 178
H. laminatus 178
Hallomenus binotatus 178
Halyzia sedecimguttata 42, 202
Harpalus affiliis 37
H. ardosiacus 179
H. azureus
H. honestus 170
H. rutipes 37
H. rupicola 173
H. serripes 179
H. servus 172
H. tenebrosum 170, 179
Helocharis lividus 44, 178
Henosepilachna argus 176, plate 1
Hydaticus seminiger 178
Hydroglyphus pusillus 178
Hylyx olexai 170, 172, 173, 174
Hypomedon debilicornis 172
Hypulus quercinus 41, 169
Ilybius subaeanes 178
Ips sexdentatus 171
Ischnomera sanguinicolis 214
Julodis onopordi fidelissima 175
Kalcipion semivittatum 201
Korynetes caerules 173
Laccobius sinuat us 178
Lampyris noctuica 49
Laricobius erichsoni 171
Larinus planus 46
Latridius consimilis 172
Lebia cyanocephala 177
Leiodes picea 170
Leistus rufomarginatus 38
Leptura scutellata 174
Limonobalbus pilistrati 42
Lionychus quadrillum 172
Lissodema cursor 170
Lixus scabricollis 175
Longitarsus dorsalis 174
L. nigerrimus 171
L. quadriguttatus 170
Lucanus cervus 36, 202
Lymexylon nave 170, 172, 174, 178
Lytta vesicatoria 37
Magdalis barbicornis 170
M. cerasi 172
M. memnonia 175
Malthinus frontalis 173
Masoreus wetterhalli 172
Medon dilutus 177
M. pectoriferus 177
Melandrorthyralma curticolis 177
M. distinguenda 177
M. suture 177
Melasis buprestoides 173
Meligethes rotundicollis 202
Microlestes minutulus 172
Microscymnus minimus 176
M. nanus 176
Molorchus umbellatarius 49
Mordellista acuticollis 178
M. berbera 227
M. breviceuda 178
M. parvuloides 174, 177
M. pentas 227, 228, 229
M. pseudoparvula 174, 177
M. pumila 227, 229
M. secreta 227, 228, 229
Mycetochara humeralis 37, 176
Mycetophagus atomarius 174
M. multipunctatus 214
M. populi 170
Nacerdes melanura 202, 208
Nebra brevicollis 38
N. gyllenhali 38
N. livida 179
N. salina 38
Nephus quadrimaculatus 170, 171, 176
Neuraphes plicicolis 176
N. talparum 172
Notaris scirpi 172, 202
Notiophilus sp. 37
Oberea ocularata 171
Ochthebus exaratus 173
Ocypus nero 171
Odacantha melanura 172
Oedemera lurida 45
Olibrus affinis 203
O. flavicornis 178, 202
Omaloplia ruricola 170
Onthophagus coenobita 46
O. joannae 46
O. vacca 178
Oodes helopieides 44
Opilio mollis 172
Oreodytes alpinus 170
Osphya bipunctata 169
Otiorhynchus crataegi 177
O. nodosus 174
O. pusillus 176
O. scaber 174
Oulimnius rivularis 170
Oxyaemus variedlosus 173, 177
Oxythyma funesta 38
Paederus sp. 45
Panagaeus bipustulatus 173
Panspetes guttatus 174
Paralister neglectus 174
Pediaces dermestoides 173, 214
Phaedon concinnus 170
Phalacrus brunipes 172
Philonthus cognatus 68
P. mareki 176
Phlocoeca nitidiventris 171
P. testacea 171
Phlocoeca vaudoueri 173
Phyllolepta laticollis 241
Phymatodes testaceus 41, 214
Phytoecia cylindrica 45
Pilemostoma fastuosa 177
Placusa complanata 171
P. depressa 171
Plagiodes versicolora 45, 202
Platymaris bracata 172
P. sericea 174
Platycis minuta 174, 214
Platystomos albino 179
Pleurophorus caESIS 33
Pogonocherus fasciculatus 177
Prionocyphon serricornis 173
Prionus cornarius 174, 177
Prionychus ater 41
Proca granulicollis 220
Pselactus spadix 202
Pseudocistela ceramboidea 170
Pseudopasilia testacea 170
Psyllodes luridipennis 177
Ptenidium brenseki 171
Pterostichus sp. 37
P. anthracinus 173
P. cristas 38
P. fooolatus 176
P. gracilis 37, 173
P. lepidus 170
P. mager 179
P. madidus 37
P. morio carpathicus 176
P. pilosus 176
Ptilinus pectinicornis 33, 201
Pinella britannica 171
Pinus sexpunctatus 178
P. subpilosus 173
Ptomaphagus subvillosus 234, 235
P. var. sericatus 234
P. varicornis 234, 235
Quedius brevicornis 178
Q. alpestris 176
Q. cincticipennis 176
Q. collaris 176
Q. subunicolor 176
Q. tristis 234
Q. unicolor 176
Ramphus oxyacanthae 172
Rhanrus frontalis 178
Rhynocyllus conicus 170
Rhizophagus oblongicollis 177
R. parallelocollis 176
Rhynchaenus pratensis 170
Rhynchites aquatus 45
R. cavinus 173
R. nanus 173
R. olivaceus 173
Rhytideres plicatus 176
Rhyzobius chrysomeloides 176
R. litura 176
Rugilus genericus 170, 171
Saperda carcharias 171, 177
S. populea 177
S. scalaris 176, 177
Saprosites mendax 173
Scarodytes haenii 178
Scopaeus laevigatus 171
S. minuta 171
Scybalicus oblongiusculus 176
Scydmaenus rufus 176
Scymnus frontalis 36
Selatosomus bipustulatus 173
Silpha atrata 45
Silvanus bidentatus 173
Sphenoptera rauca 175
Stegobium panicicum 201
Stenelmis canaliculata 170
Stethorus punctillum 176, 202
Stenus sp. 68
S. excubitor 176
Strangalia quadrafasciata 174
Strophosoma faber 178
Synchita humeralis 170, 172
S. separanda 172
Tachyporus pusillus 234
Tachys parvulus 179
Taenapion urticarium 201
Tanyneus palliatus 175
Taphrocyclus bicolor 170
Tetramota ancora 173
Tetropium castaneum 177
Thanasimus formicarius 48
Thea vingtiduopunctata 91
Trachodes hispidus 170, 176
Trachyphloeus asperatus 170
Trachys coreus 175
T. minutus 48
Trechus micros 179
T. rubens 179
Trichonyx sulcicollis 172
Trichosirocalus barneveillei 172
Trinodes hirtus 170
Tropophorus terricola 175
Trypophloeus asperatus 171
Tychius brevisculus 171
Tythaspis sdecimpunctata 89, 90
Uleiota planata 170, 172, 176
Varimorda villosa 49, 178
Xantholinus angularis 172
Xestobium rufoviridum 41, 245
Zeugophora subspinosa 241
Zyra haworthi 174

DIPTERA
Acanthiphilus helianthi 167
Acomoptera 132, 133
Acrocer a globuluris 51
Acrometapia wahlbergi 26
Agathomyia cinerea 168
A. unicolor 168
A. woodella 168
Aglaomyia 130, 132, 133
A. gatineau 130
Anapausis rectinervis 166
A. soluta 166
Anasinyia interpuncta 169
Aphrosylus sp. 38, 39
A. ferox 39
A. raptor 39
Apolephthisa 133
Asilus crabroformis 16, 26, 27, 167
Atylotus fulvus 166, 168
A. latistriatus 168
Boletina 132, 133
B. ingrica 130
Bombylius major 57, 60, 62, 203
Brachicoma devia 60, 63
Brachyopa dorsata 169
B. pilosa 247
Brachypterygidae lentus 167, 169
Brachypalpus larthiroarmis 247
B. valgus 169
Braula coeca 166
B. schmitzi 166
Calamoneosis glycerae 45
Caliprobola speciosa 169
Campiglossa producta 168
Campticnemus 215, 218
Catharosia pygmaea 88
Cephalops perspicuus 168
Ceriana conospathoides 169
Chalcosyrphus eunotus 169
C. nemorum 43
Cheiliosia canicularis 169
C. griseiventris 168
C. scutellata 167
C. semifasciata 168
Chetostoma curvinerve 166, 167
Choerades marginatus 167
Chorisops nactomum 203
Chrysogaster solstitialis 48
C. virescens 43
Chrysops sepulcralis 166
Chrysotoxum bicinctum 233
C. caudum 247
C. elegans 169
C. festivum 169, 203, 244
C. octomaculatum 168, 247
C. vernale 169
Cistogaster globosa 140
Cleagastra apicalis 45
Clorismia rustica 26
Coelophthia 133
Coelosia 132
Conops quadripunctatus 169
C. strigatus 48
Contaminia pyrivora 45
Cosmetopus dentimanus 26
Creagdhubia mallochorum 121 / 133
Criorhina asiatica 169
Ctenophora flavolata 166
C. ornata 165, 167, 169
Demoticus plebejus 47
Dialineura anlis 166
Dinacronymia lucida 43
Dioctria atricapilla 45
D. baumhuerti 43
D. cothurnata 166
D. oelandica 167
D. rufipes 43
Dioxystra bidentis 165
Drepanocercus 132
D. ensifer 133
D. spinipennis 133
Dziedzickia 132, 133
Ectophasia crassipennis 169
Ectrepestheneura 130, 132, 133
Episyrphus balteatus 48
Eriothrix prolixa 47
Eristalinus sepulchralis 169
Eristalis sp. 243  
E. arbusorum 169  
E. horticola 169  
Eudicrana 132  
Eupeodes sp. 169  
E. lapponicus 54  
E. latihunulatus 167, 203  
Euphildorea aperta 43  
Eustalomia festiva 233, 234  
E. hilaris 43  
Eutolmus rufibarbis 167, 168  
Exorista tubulosa 46  
Fannia hamata 60, 63  
F. tuberculata 168  
Goniglossum wiedemannii 168  
Grzegorzekia 121/133  
G. collaris 121/133  
Gymnosoma nitens 140, 141  
G. rotundatum 140, 167  
Hadroneura 133  
Haematopota grandis 165, 166  
Helophilus trivittatus 169  
Hilara hybrida 168  
H. lugubris 167  
Homoneura tesquae 203  
Hydrodromia stagnalis 203  
Lapposyrphus 169  
Lejops vittatus 169  
Leucophora 63  
L. obtusa 57, 60, 62, 63  
Lipsothrix nervosa 26  
Machimus rusticus 168  
Megamerina dolium 167  
Megaselia giraudii 174  
Melisaeva cinetella 233  
Merodon armipes 169  
M. equestris 45  
Metalimmobia quadrimaculata 167  
Metasyrphus corollae 48  
Microdon analis 169  
M. mutabilis 169  
Micropygus sp. 215, 216, 218  
M. vagans 215, 217, 218  
Myennis octopunctata 166  
Myolepta potens 54  
Myopa fasciata 167  
Myopites inulaedysssenteriae 166, 168  
Neocasia annixa 169  
N. unifasciata 169  
Necoitamus cothurnatus 26  
N. cyanurus 43  
Nephrotoma cornicina 166  
Ochthera mantis 167  
Odontomyia hydroleon 26  
Oedalea holmgreni 231  
O. ringdahlb 231  
Oestrus ovis 168  
Ogcodes gibbosus 167  
O. pallipes 46, 167  
Ophiomyia gnaphali 11, 12  
Oxya parietina 203  
Pamponerus germanicus 166  
Paracrocera orbiculus 51, 167  
Paratinia sp. 132  
Parhelophilus versicolor 45  
Parochthiphila coronata 168  
Pelecorca tricincta 168  
Pherbellia cinerella 203  
Phoenikiella 129, 130, 132, 133  
P. phoenix 121/132  
Phthisia 133  
Phytomyza gnaphali 11  
P. kyiithusana 11  
Pilaria fuscipennis 43  
Pipiza bimaculata 167  
P. fasciata 169  
P. festiva 169  
P. lugubris 168  
Pipizella annulata 169  
Platycepha umbraculata 168  
Platayheirus discimans 166  
P. granditarsus 233  
P. occultus 167  
P. splendidus 168  
Platypalpus luteolus 167  
Platytheza aterrima 168  
P. consobrina 168  
P. hirticeps 168  
Pocota personata 35  
Polyleptia 133  
Prionocera subserricornis 166  
Prosemaiberita 46  
Protoclythia modesta 168  
P. rufa 168  
Pseudolimnophila sp. 43  
Psilotupa anthracina 167  
Ptychoptera minuta 43  
Rhagio scolopaceus 167  
R. strigosus 167  
Rhamphomyia gibba 167  
Rhingia campestris 233  
Rivellia syngenesiae 43  
Sapromyza bipunctata 48  
S. opaca 46  
Scatella stagnalis 203  
Senometopia excisa 137  
S. intermedia 137  
S. pollinosa 137  
Sepedon sphagea 203  
Sericomia 43  
S. silentis 244  
Solve marginata 165  
Speolepta 133  
Sphegina elegans 43  
S. sibirica 168  
Sphiximorpha subssissilis 169  
Spiriverpa lunulata 26  
Stratiomys chamaeleon 26  
S. potamida 166  
Sympenus 215, 218  
Synapha 133  
Syntemna 133  
Syntormon sp. 203  
S. filiger 168  
Syriphus ribesii 48  
Tabanus cordiger 166
Aphididae
Asteroscytus 166
Tetrapoecila 166
Taphiopyla conura 167
Tergella vectensis 168
T. winthemii 168
Tetragoneura 130, 133
Theophora atra 43
Theresa harldrischi 166
Thyridanthrax fenestralis 166
Tipula griseescens 166
T. helvola 166
T. livida 166
T. maxima 43
T. melanoceros 166
T. vernalis 45
T. yerburyi 43
Trigonometopus frontalis 45
Tropidia scita 169
Trypetia artemisiae 168
Urophora spoliata 168
Volucella bombylans 244
V. inflata 169
V. zonaria 167, 168
Xanthogramma sp. 45
X. pedissequum 203, 244
Zodion cinereum 167
Z. notatum 165

HEMIPTERA
Aelaiacuminata 45, 204
Anthocoris sp. 204
A. visci 237, 238
Aphanus rolandi 179
Aphids 203
Aptus mirmicoides 35
Asiraca clavicorns 48, 239, 240
Balanococcus diminutus 174
Buchananiella continua 221, 222, 223
Cardiastethus fasciiventris 221, 222
Centrotus cornutus 45
Cicadula persimilis 225, 226
Cosmotettix caudatus 225, 226
Cyphostethus tristriatus 243
Deraeocoris flavilinea 180, 204, 211
Dicranoccephalus medius 179
Dolycoris baccarum 243
Dufouriellus ater 179, 222
Elasmucha grisea 243
Empicoris culiciformis 204
Enoplops scapha 180
Eurygaster sp. 243
Fieberiella sp. 180, plate 2
Globiceps juniperi 179
Gonocerus acutangulatus 35, 91
Hebrus pusillus 235, 237
H. ruficeps 235, 236, 237
Holocostethus vernalis 242, 243
Hydrometra gracilenta 180
H. stagnorum 180, 204
Idiocerus decimusquartus 204
I. stigmaticalis 204
Lycocoris campestris 204
Metaplophiditomoides 204
Nezara viridula 243
Nysia senecionis 141, 204, 211, 229, 230
Odontoscelis fuliginosa 179
O. lineola 179
Orius sp. 204, 221
Orthops visciola 237, 238
Palomena prasina 30, 40, 243, 244
Picromerus bidens 243
Placotettix taeniatorns 239
Podop sinuenta 141
Psylla visci 237, 238
Pulvinaria vitis 204
Reptalus panzeri 239, 240
Rhacognathus punctatus 43
Sciocoris curtisana 141
Sigara dorsalis 204
Stephanitis rhododendri 239
Stictopleurus punctatonervosus 180
Xylocoridaevispilennis 222

HYMENOPTERA
Aebia atropos 180
Alloxylinus rossei 180
Alysson lunciornis 182, 184
Ammophila sabulosa 9, 48, 49
Ancistrocerus nigricornis 2, 9
A. parietiniz 9
A. parietum 9
A. scoticus 9
Andrena sp. 57, 59, 61, 62, 63, 64, 65, 244
A. argentata 181, 183
A. barbilabris 10
A. clarkella 10, 244
A. denticulata 10
A. ferox 181, plate 2
A. flavipes cover part 2
A. fulva 10, 57, 58, 59, 60, 61, 62, 63, 64, 65
A. fuscipes 183
A. haemorrhhoa 10
A. hattorfiana 181
A. nigricans 183
A. nigroaenea 10
A. nigrospinosa 181
A. ocreata 181
A. praecox 245
A. scotica 10, 34, 45, 62, 65
A. tibialis 181, 183
A. vaga 65
Anoplius concinnus 184
A. infuscatus 9
A. nigerrimus 9, 184
A. viaticus 182, 244
Anthophora plumipes 181
Apanteles glomeratus 77
Aphaereta minuta 174
Aphis mellifera 10, 168, 204
Aphanthospila aniceps 9
A. trivialis 9
A. wesmaeli 9
Argogorytes formac 180
Asta boops 184
A. pinguis 9
Athalia rosea 183
Auplopus carbonarius 205
Bethylus boops 204
Blennocampa phyllocolpa 43
Bombus sp. 45, 204
B. bohemicus 183
B. campestris 183
B. humilis 183
B. hortorum 10, 183
B. lapidarius 10
B. laevis 10
B. muscorum 183
B. pascuorum 10, 34
B. pratorum 10
B. rupestris 183
B. soenenis 183
B. subterraneus 243
B. sylvanum 183
B. terrestris 10, 34, 183
Ceratina cyanea 182
Cerceris arenaria 48
C. quadricineta 181
Ceropales maculata 9, 182
Chelostoma florosomme 43
Chrysina comparata 180
C. dichroa 180
C. fulgida 182, plate 2
C. heleni 180, 182
C. ignita 9, 205
C. impressa 9
C. viridula 181, 182
Chrysogona gracillima 181, 182, 184
Chrysura radians 182
Cimbex femoratus 181
Cleptes nitidulus 9
C. semiauratus 181, 182
Coelioxys conoidea 183
C. elongata 10
C. mandibularis 183
C. quadridentata 2, 10
Colletes cunicularis 10
C. floralis 181
C. fodiens 10, 182
C. marginatus 10, 183
C. similis 10
C. succinclus 10, 182
Crabro cribrarius 9
C. peltarius 9
C. scutellatus 43
Crossocerus annulipes 9
C. dimidiatus 25
C. megacephalus 9, 42, 232, 233
C. quadriracematus 9, 25
C. tarsatus 9
C. vagabundus 25
C. walkeri 182
C. wesmaeli 9
Cryptochelis notatus 181, 182, plate 2
Dinotrema feneola 174
Diodontus minutus 9
D. tristis 9
Diphyus quadriracematus 241
Discoclis zonatus 180
Dolerus germanicus 45
Dolichovespula adulterina 31
D. media 31
D. norvegica 31, 182
D. omissa 31
D. saxonica 31, 182, 184
D. sylvestris 9, 31, 182
Ectemnius sp. 205
E. continuus 9
E. dives 182
E. lapidarius 9
E. ruficorns 183, 232, 233
E. sexcinctus 180, 182
Epeolus cruciger 180
E. variegatus 10
Episyron fulvescens 9
Eumenes coeratus 183
E. coronatus 180
E. mediterraneus 180
Euodynerus dantici 180
Evagates crassicornis 9
Formica aquilonia 138
F. exsecta 183
F. fusca 92
F. lemani 92
F. lugubris 138, 139, 140, 183
F. rufa 92, 138, 139, 171
Formicoxenus 92, 138, 139, 140
Gorytes quadrifasciatus 184
Halictus rubicundus 10, 183
Hedychrum media 9
H. coriaceum 184
H. cuprum 9, 180
H. flavipes 180
H. valesiense 180
Hedychrum niemelai 180, 181
Heriades truncorum 181, 183
Holarctia amoenula 180
Homonotus sanguinolentus 182
Hoplitus claviger 10
Hylaeus brachycephalus 180
H. brevicornis 10
H. communis 10
H. cornutus 184
H. diffinis 180
H. hyalinus 10
H. signatus 133, 184, 205, 241
H. sinuatus 180
H. variegatus 180
Lasiosglossum albipes 10
L. brevicorne 183
L. calceatum 10
L. cupromicans 183
L. fratellum 183
L. laevigatum 2, 10
L. malachurus 245
L. nitidiusculus 10
L. pauperatum 181
L. punctatissimum 10
L. quadrinotatum 181
L. rufitarsus 183
L. violosulm 10
Lasius brunneus 184
| L. flavus 92, 184 |
| L. fuliginosus 92, 184 |
| L. mixtus 92 |
| L. Niger 92, 184, 205 |
| L. sabularum 92 |
| L. umbratus 92 |
| Leptothorax acervorum 92, 183 |
| L. interruptus 183 |
| L. nylanderi 183 |
| L. tuberum 183 |
| Lindenius albilabris 184 |
| L. panzeri 184 |
| Lissonota luffiator 23 |
| Loderus eversmanni 45 |
| L. vestigialis 45 |
| Macrophya annulata 45 |
| M. duodecimpunctata 45 |
| M. montana 45 |
| M. punctatumalbum 14 |
| Megachile centuncularis 10 |
| M. circumcincta 10 |
| M. leachella 181 |
| M. maritima 10, 183 |
| M. willughbiella 10 |
| Melicta albifrons 181 |
| Melitta haemorrhoidalis 181 |
| M. leporina 183 |
| M. tricincta 184 |
| Mellinus arvensis 9 |
| Methocha ichneumonoides 182 |
| Microdynerus exilis 180, 205 |
| Minunessa littoralis 182 |
| Mutilla europaea 181, 183 |
| Myrmica rubra 184 |
| M. ruginodis 92, 184 |
| M. sabuleti 92 |
| M. scabrinodis 184 |
| M. sulcinodis 183 |
| Myrmodes atra 9 |
| Nemanthus oligospius 45 |
| Nomada sp. 61 |
| N. baccata 183 |
| N. fulvicornis 181 |
| N. marshallae 181 |
| N. panzeri 57, 58, 59, 60, 61, 62, 64, 65 |
| N. rufipes 10, 183 |
| N. signata 57, 183 |
| Nysson dimidius 183 |
| N. trimaculatus 183 |
| Oecophylla smaragdina 182 |
| Odynerus albopictus 180 |
| O. reniformis 180 |
| Omalus aeneus 182 |
| O. auratus 9, 205 |
| O. puncticollis 182 |
| O. violaceus 181, 182, 183 |
| Osmia aurulenta 10 |
| O. bicolor 49, 181 |
| O. caerulescens 10 |
| O. leiana 10 |
| Oxybelus argentatus 9 |
| O. mandibularis 2, 9 |
| O. uniglumis 9, 49 |
| Pachyprotasis variegata 181 |
| Pamphilius varius 181 |
| Passaloecus corniger 9 |
| P. gracilis 9 |
| P. insignis 9 |
| Pemphredon sp. 205 |
| P. inornatus 9 |
| P. leithifer 9 |
| P. lugubris 9, 42, 182 |
| P. morio 9 |
| Perilitus coccinellae 174 |
| Philanthus triangulum 180, 182 |
| Podalonia affinis 9, 180 |
| P. hirsuta 9 |
| Polyechis sp. 182 |
| Pompilus cinereus 9, 184 |
| Priocepmis agilis 184 |
| P. cordivalvata 184 |
| P. coriacea 181, 182 |
| P. parvula 9 |
| P. perturbator 45 |
| Psen bruxellensis 9 |
| P. equestris 9 |
| P. littoralis 9 |
| Pseudopipona herichii 181, 182 |
| Psithyrus barbutellus 10 |
| P. bohemicus 10 |
| P. campestris 10 |
| P. rupes 181 |
| P. sylvestris 10 |
| P. vestalis 10 |
| Pterocheilus phaleratus 180 |
| Sapyga quinquenectata 181 |
| Sphecodes sp. 6 |
| S. crassus 181, 183 |
| S. ferruginatus 10 |
| S. geoffreys 10 |
| S. niger 181, 183 |
| S. pellucidus 10 |
| S. scabricollis 183 |
| S. spinulosus 181 |
| Spilomena troglodytes 9, 184 |
| Stelis ornatula 10 |
| S. punctulatissima 183 |
| Stenamma debile 92, 184 |
| Stenus pendulus 182 |
| Symmorphus bifasciatus 9 |
| Tachysphex nitidus 9 |
| T. pomphiliformis 9 |
| Tetramorium caespitum 183 |
| Tiphia femorata 182 |
| T. minuta 181 |
| Trichrysis cyanae 42 |
| Tomostethus multicinctus 14 |
| T. nigritus 13, 14 |
| Tormus nitens cover part 4 |
| Vespa crabro 31, 48, 181 |
| Vesapula sp. 63 |
| V. austriaca 31 |
| V. germanica 9, 31, 241 |
| V. rufa 9, 31, 182 |
| V. vulgaris 9, 31, 167, 242 |
| Xiphydria camelus 201, 205 |
LEPIDOPTERA
abruptaria, Menophra 160
acanthadactyla, Amblyptilia 154, 161, 162
acris, Acronicta 247
acteon, Thymelicus 144
ab. alba 143, 144
adelphella, Scita 156
advenaria, Cephis 152
ab. fulva 151
aegeria, Pararge 76, 80, 82, 143, 146, plate 1
ab. cockaynei 144, 146
ab. parviocellata 146
ab. saturiator 146
aenestina, Commophila 153
aeriferanus, Psycholomoides 155
aerugula, Nola 147
aetheriae, Melitaea 162
agestis, Aricia 48
ab. deleta 117
ssp. cramera 163
aglaja, Argynnis 47
ab. post-fasciata 142
ab. wimani 143, plate 1
aglaja, Mesoaecidia
ssp. lyautyi 164
agnorista, Abrostola 151
albanica, Tetanocentria 160
albedinella, Bucculatrix 157
albicella, Salebriopsis 152
albimacula, Hadena 152
albimaclea, Denissa 162
albipuncta, Mythimna 147, 148, 150, 152, 165
albipunctata, Cyclophora 49, 152
albostigmata, Mniotype 163
albula, Meganola 148, 152
alciphrön, Heodes
ssp. melibaeus 164
alealis, Diaphania 163
alicantaria, Idaea 161
alpinella, Platytis 153
alpium, Moma 50, 51, 150
alyssumaata, Idaea 159
Amphipoea sp. 152
anatipennella, Coleophora 157
Ancylis sp. 161
anderidiae, Phyholoryctera 157
anella, Lamoria 161
angustea, Eudonia
ssp. acuminata 162
angustella, Nephocterix 158
annae, Glossostrophia 160
annularia, Cyclophora
ab. obsolete 151
ab. sertaria 151
antalus, Virachola 144, 161, 162
antioga, Orgyia 205
antiquaria, Idaea 159
apidella, Mctomeria 156
aprilina, Dichonia
ab. bruneomixta 151
ab. semivirgata 151
arenosella, Ancylosis 161
areola, Xylocampa 247
argiolus, Celastrina 143, 205
ab. lilacina-lata 143
argus, Plebejus
ssp. argus 48
ssp. caernensis
ab. splendidia 146
ssp. hypochonius 164
argyrogrammos, Pyroderes 160
aridella, Pediaea 152
arion, Maculinea 134, 245
aristaeus, Hipparchia 81
ssp. blachieri 162
armiger, Helicoverpa 150, 152, 161
arntemiseoleta, Coleophora 158
asclepiadis, Abrostola 151
asella, Heterogenea 151
asellaria, Glossostrophia 160
asialis, Botyodes 163
asinalis, Mecyna 163
atalanta, Vanessa 76, 80, 83, 205
ab. klemensewiczii 146
ab. merrifieldi 142
athalia, Mellicta
ssp. celadussa 162
atlantica, Plebicula 164
atlanticum, Udea 162
atlanticus, Agriphila 162
atomaria, Ematurga
ab. dentaria 151
ab. praeclara 151
ab. unicoloraria 147, 151, plate 2
atra, Acanthopsycha 156
atriplisicus, Trachy 165
atropos, Acherontia 150, 163, 186
atrux, Agrotis 163
attenuaria, Idaea 159
aurata, Pyrausta 155
aurina, Eurodryas
ab. atratus 142
gynandromorph 144, plate 1
ab. melanoleuca 144
ab. sebaldis 142, 144
aurolaciana, Olethreutes 154
aversata, Idaea 151, 159
baliodactylus, Merrifieldia 49, 156
balteata, Sylepte 163
bankiana, Deltole 147
barbagiae, Pseudophilotes 164
bato, Pseudophilotes 164
beata, Eteobalea 160
belemiata, Idaea 159
bellargus, Lysandra 46, 47
berbera, Amphipyra
ssp. svenssoni 150
betulae, Thecla 146, 245
ab. unistrigata 146, plate 1
betuletana, Apotomis 51
betulilela, Caloptilia 157
biangulata, Euphyia 49, 51, 151
bicuspis, Furcula 50, 152
bifasciata, Olethreutes 156
bifurcatus, Agdistis 161
bigladata, Idaea 159
bipartita, Pseudozara 161
bipunctalis, Herpetogramma 163
biseleta, Idaea 51
biskralis, Hyperlaia 161
bisulcella, Euchresta 158
bivella, Vitula 242
blaesii, Idaea 159
blandelloides, Caryocolum 155, 156
blenna, Lacinobia 160
blomeri, Discocodia 147, 150, plate 2
boeticus, Idaea 159
botrana, Lobesia 154
brassicae, Peris 77
  ssp. wollastonii 69, 76, 77, 80
britannidactyla, Capperia 49
bruguieralis, Dolicarchthria 161
brunnichana, Euphoria 51
buettneri, Sedina 147, 148, 150
butleri, Sylepte 163
buvati, Tetanocentria 160
caececiana, Pelochrista 50
caelia, Hadena
  ssp. manamii 150
caja, Arcta 150, plate 2
calabra, Rhodostrophia 160
c-album, Polygona 144, 146, 205, plate 1
  f. hutchinsoni 142
  ab. obscura 146
  ab. reichenstettensis 144, 146
  ab. suffusa 146
calunetaria, Idaea 159
camilla, Limenitis 117, 186
cancellalis, Epipagis 186
capitella, Lampronia 158
caradjae, O esoconia 154
cardamines, Anthocharis
  ssp. britannica 143
    albino 117
  gynandromorph 143
  ssp. hibernica 144
carduella, Agonopterix 158
cardu, Cynthia 39, 76, 80, 84, 142, 143, 205
carphodactyla, Euleiopthius 153
carpinella, Parornix 157
carvalhao, Idaea 159
castrensis, Malacosoma 165
centrostrigaria, Xanthorhoe 163
cervantaria, Idaea 159
cervinalis, Rheumaptera 152
chaerophylla, Epermenia 158
chalcites, Chrysodeixis 163
cheiranthis, Pieris 77
choragella, Moropha 153
chrysippus, Danaus 76, 86, 146, 158
chrysocomae, Hellinsia 153
chrysoplepida, Eriocrania 156
cidarella, Buchulatrix 157
citalis, Nasca 153
ciliatum, Spodoptera 163
cinerosella, Euzophera 153
cinxia, Melitea 142, 164
circuitaria, Idaea 159
circunflexa, Cornutiplusia 163
cleathrata, Chiasma
  ssp. cleathrata
    ab. fasciata 151
    ab. obsoletissima 151
    ssp. hugginsi 150
cleipalpis, Paradrina 163
cleopatra, Gonepteryx 78
  ssp. cleopatra 163
  ssp. cleobule 78
c-nigrum, Xestia 163
    ab. albinotica 151
comeae, Timandra 160
comes, Noctua 152, 186, 247
comperta, Eilema 152
compta, Hadena 152
confusa, Macdunnoughia 148, 150
conicolana, Cydia 156
conigeralis, Urolepa 163
contaminella, Pediasia 153
conterminana, Euco sma 156
contigua, Lacinobia 49
convexella, Ancylosis 161
convolvuli, Agrius 150, 186
cordon, Lysandra 117, 143
  ssp. caelestissima 164
cornutella, Coleophora 162
corylata, Electrophages 40, 147
cossus, Cossus 148
costaestrigalis, Schrankia 49
craccae, Lygephila 147, 150
crassa, Agrotis 147, 165
crassalis, Hyena 51, 151
crassicervicella, Cosmopteryx 160
cribbraria, Coscinia
  ssp. trivittata 165
croceago, Jodia 135, 136
croceus, Colias 39, 48, 76, 78, 80, 81, 93, 142, 146
  ab. alba 93
  var. cremoneae 81, plate 1
  var. dawsoni 81, plate 1
  var. faillae 81, plate 1
  var. geisleri 81, plate 1
  v. helice 81, 93, 146
  ab. helicinoides 81
  ab. pallida 81, 93
  var. radiata 81, plate 1
  ab. ruswurmii 93, 94, 95
  ab. tergestina 81
croicapitella, Monopis 157
cuculata, Catarhoe 50
culiciformis, Synanthedon 147
  ab. flavocingulata 147, 152
cuprella, Adela 157
cupressata, Thera 148, 150
cupressella, Argyrethra 34, 35
curtula, Clostera
  ab. webbiana 151
damone, Anthocharis 162
dardoinaria, Crocallis 150
ab. antigone 146
ab. belsaria 146
ab. exoculata 146
ab. fischeri 142
ab. prochnovi 146
iris, Apatura 225
irrorata, Scopula 163
irrorella, Setina 50, 151
islandicus, Stenoptilia 153
janthe, Noctua 186
japygiaria, Menophra 160
jurtina, Maniola 143, 162, 164
ab. fracta 142, 143
ynandrormoph 143
ab. irregularia 143
ab. postmultifidus 143
karsandria, Zizzeria 164
kuehniella, Ephesia 156
labecula, Dryobota 164
lacteana, Bactra 155
lactearia, Jodis 165
l. album, Mythymna 152
lancealana, Bactra 154
lantanella, Phyllonycterycte 157
lapidella, Luffia 17, 18, 19, 20, 21, 22, 23, 24
laricella, Coleophora 157
lathonia, Issoria 76, 85, 142, 146, plate 1
lathoniellus, Crambus 155
latiferalis, Ulopetra 163
latipennata, Euphytha 163
latreillei, Methora 163
latreillella, Pancha 160
ledereriella, Coccidiphila 160
leporina, Acontia 147
leucodactyla, Merrifieldia 49, 153
leucogaster, Ochroleuca 163
leucographa, Cerastis 148
leucographe, Phyllonycterycte 153
leucostigma, Celaena
ab. fibrosa 148
licarsisalis, Herpetogramma 158, 159, 161, plate 2
lichenaria, Cleorodes 51, 147, 151
lichenaea, Eumichtis 148, 164
ligula, Conistra 243
ligustri, Craniophora 51
limbirena, Ctenoplusia 163
linearia, Cyclophora 51, 147
litigiosaria, Idaea 159
lindricalis, Hypona 163
livornica, Hyles 148
lixella, Coleophora 50
longaria, Idaea 159
lonicerae, Zygaena 247
loryi, Mythymna 163
loti, Zygaena 247
lucens, Amphipoea 150
lucerne, Standfussiana 150
lucida, Acontia 150, 165
Luffia sp. 20
lunaedactyla, Marasmarcha 153
lundbladi, Gymnoscelis 163
lundbladi, Pempelella 162
lunulana, Cydia 156
lunularia, Selenia 147, 165
lusohispanic, Idaea 159
lutulenta, Aporophyla 150
ab. sedi 152
lutulentaria, Idaea 159, 161
macularia, Pseudopanthera 147
ab. fuscaria 151
ab. quadrimaculata 151
maderae, Idaea 163
maderae, Menophra 163
maderensis, Cryphia 163
maderensis, Cyclophora 163
maderensis, Gonepteryx 76, 78, 80, plate 1
maderensis, Hipparchia 76, 80, 81, plate 1
maderensis, Mesapamea 163
maderensis, Udea 162
malvac, Pyrgus
f. taras 163
margaritella, Catoptria 51
margarodes, Pardomima 163
marginata, Lomaspiis 165, 186
marginepunctata, Scopula 147, 160
martini, Plebejus
ssp. martini 164
maura, Mormo 205
mayrella, Coleophora 158
mediaria, Idaea 159
megacephala, Aecromia 151
melanops, Glaucopsyche
ssp. algirica 164
mendica, Diaphora 147
f. rustica 147, 150, 152
metzneriana, Eucosma 155
micalis, Tebenna 154, 155, 156
millergicactyla, Stenoptilia 153, 158
mimiata, Miltochrista
ab. flava 152
minimus, Cupido 47
ssp. trinacriae 162
minorata, Scopula 160
minuscularia, Idaea 159
miscella, Mompha 160
misippus, Hypolinneas 76, 85
monacha, Lym nantra
ab. atra 151
nickerlii, nesiota, nerii, napi, napaea, muscaeformis, murana, mueileriella, morgane, inonodactyla, moneta, nupta, numeralis, noctuella, nitidana, nigropunctata, nielswolffi, obstipata, obsoletaria, obscurata, Gnophas, obscurata, Gnophas, ab. argilaceaaria 151, ab. bicinctata 151, ab. calceata 151, ab. fasciata 151, ab. obscuriata 151, ab. saturata 151, obsitalis, Hypena 151, 165, obsoletaria, Idaea 159, obstipata, Orthonama 51, 147, 148, 150, 165, obtusa, Pelosia 147, 148, obviella, Monopis 157, occitania. Melanargia, ssp. pherus 162, ocellea, Euchromius 153, ochraceellla, Mompha 153, ochrata, Idaea 159, ochraria Semiaspilates 38, 152, ocularis, Theatha 164, olivana, Oletreutes 158, omissella, Leucosiplapteryx 157, ononaria, Aplasta 147, ononidis, Parectopa 155, oo, Dicycla 161, ophiogramma, Apamea 151, or, Tethea, ab. albingensis 151, ab. permarginata 151, orana, Adoxophyes 156, orbifer, Spialia 162, orbona, Noctua 152, 186, orichalcea, Thysanoplusia 148, 150, 163, ornata, Scoopula 49, 50, 160, ossea, Hydreaemia, ssp. hucherardi 151, osteoacutus, Hellinsia 158, ostrina, Eublema, ab. carthami 147, ostriaria, Idea 159, padella, Yponomeuta 51, palarica, Erebia 164, paleacea, Enarga 152, palealis, Sirochroa 154, 155, 158, paludella, Calamotropha 152, paludem, Buckleria 48, 49, pamphilus, Coenonympha, ab. caeca 143, plate 1, pandalis, Microstega 155, paphia, Argynnis 142, ab. confuens 144, pariana, Choreutis 156, parthenias, Archiearis, ab. luteata 151, ab. obscura 151, partita, Galgula 163, parva, Eublema 147, 150, parviangusta, Eudonia 161, parvidactylus, Pararotroda 151, ssp. demuthi 147, ssp. obscura 151, phaleromima, Pardomima 154, ssp. monochromella 154, perlucidalis, Phlyctenaenia 153, perplexa, Hadena, ssp. capsophila 150, phalaromima, Pardomima 163, phaenice, Zebronia 163, phlaeas, Lycaena 85, ssp. elclus, ab. cuprinus 144, gynandromorph 146, plate 1, ssp. phlaeoides 76, 80, 84, 85, var. caeruleopunctata 85, plate 1, f. obsoleta 85, f. radiata 85, phoebe, Melitaeae, ssp. occitaniae 164, picaeppennis, Seythris 158, pierci, Aethes 155, pimpcinellata, Eupithecia 147, 153, piniaria, Bupalus 150, pinicolella, Batrachedra 156, plantagninis, Parasemia 46, plebeja, Hada 147, plecta, Ochropleura 151, 165, plate 2, plexippus, Danaus 76, 80, 84, plumaria, Anthometra 160, poeyalis, Marasmia 186, polycymalis, Sylepte 163, polyoidalis, Conogathes 163, pomonella, Cydia 39
populetorum, Caloptilia 157
populi, Laothoe 150, plate 2
porata, Cyclophora 148
Powellinia sp. 161
predatoria, Idaea 159
proboscidalis, Hypena cover parti 3
processionea, Thaumetopoea 150, 165
profugella, Cataplectica 153
pronuba, Noctua 163, 186
pronubana, Cacoecimorpha 153
pseudocanariensis, Agdistis 161
pudoraria, Palpita 163
pudorina, Mythimna 49, 147
pulcherrimella, Powellinia recurvalis 160
pulveratella, Ypsolopha 154
punctaria, Cyclophora 48
puncticactyla, Amblyptilia 154
punctifera, Ypsolopha 154
punctocipluvia, Lantanophaga 154
putris, Axyla 147
quadra, Lithosia 150
quadripunctaria, Euplagia 165
quercus, Quercusia 146, 224
quercus, Quercusia 146, 224
quercus, Quercusia 146, 224
gynandromorph
ramburialis, Diasemiopsis 156
ramosaria, Cleta 160
rampae, Pieris 76, 77, 80
ravid a, Spaelotis 148
reaumurella, Adela 44
recens, Orgya 147
recisella, Allocita 160
recurvalis, Hymenia 163
recurvalis, Spoladea 163
repandaria, Epione 186
repandata, Alcis
ab. conversaria 151
retractalis, Sylepte 163
rhanni, Gonepteryx 244, 245
rhododactyla, Cnaemidophorus 156
rhomboida, Xesita 147, 151
ripae, Agrotis 160
rivularis, Hadena 161
rosmarinella, Vulcaniella 160
rostralis, Hypena 148
rubia, Callophrys 49
rubidata, Catathoe 50, 151
rubiginea, Conistra 147, 150
ab. modestissima 151
rumina, Zerynthia
ssp. africana 163
rupicola, Xanthorhoe 163
rusticata, Idaea 159
ssp. atrosignaria 147, 148
rutae, Agrotis 163
sacraria, Rhodometra 49, 147, 148, 150
salleta, Dasystoma 153
salicorniae, Coleophora 153
salopiella, Eriocrania 156
sanguinalis, Pyrausta 162
sannio, Diacrisia 49
sardoniata, Idaea 159, 161
sarronalis, Sylepte 163
saturata, Eupithecia 50, 150
saucia, Peridromia 163
scalella, Pseudotephphusa 155
schuetzella, Dioryctria 156
scoriella, Eudonia
ssp. wollastoni 162
scribaila, Cosmopterix 155
segetum, Agrotis 163
selene, Boloria 143
semele, Hipparchia 81
semiargus, Cyaniris 162
semirubella, Oncocera 155
senticetella, Gelechia 154
sequella, Ypsolopha 137
seriata, Idaea 159
sericeata, Idaea 159
serradaguae, Mythimna 163
serricornis, Belialchista 51, 154
serrtorius, Spialia 162
similaria, Parectrops 51
similella, Denisia 162
similella, Elegia 156, 158
sinapis, Leptidea
ssp. juvernica 144
sinuella, Homococosa 158
sociella, Aphonia 34
sommulentella, Bedelia 158
sorbiella, Argyreesthia 156
sororiata, Carsia 51
sparganii, Archanara 147, 148
spinosisissimae, Stigmella 158
sponsa, Catocala 152
stachyalalis, Phylctaenia 49, 50, 153, 155
statilinus, Neohipparchia 76, 83
f. allionia 83
stellatarum, Macrogllossum 224, 225
stereo da, Gisela 160
straminata, Idaea 148, 160
striatella, Isophrichis 153
strigillaria, Perconia 49
strigulatella, Phylloryciter 157
subaquarella, Schiffermuelleria 154
subdivisella, Mopha 160
sublustris, Apamea 50
subrufraria, Idaea 159
subsericeata, Idaea 159
subumbrata, Eupithecia 50
suffumata, Lampropteryx
ab. piceata 151
ab. porritii 151
suppunctaria, Cyclophora 160
swammerdamella, Nematopogon 44
syl vata, Abraxas 137, 148, 150
sylvata, Hydrea 51
sylvestraria, Idaea 49, 150
syringaria, Apamea 51
tages, Erynnis
ssp. baynesi 144
taurella, Ochsenheimeria 51, 153
texicirai, Noctua 163
tenebrata, Panemiera 48
testata, Eulithis 186
testudinaria, Hyphoraia 160, 161
testulalis, Maruca 163
tetragonana, Epiblema 158
tetrapunctella, Athrips 155
thersites, Agrodiaetus 163
tilae, Mimas 34
tineana, Anclys 155
titonius, Pyronia
  ab. anticrassipuncta 143
  ab. lanceolata 143
  ab. multocellata 143
  ab. obscurior 143
tityus, Hemaris 150
torquatella, Atemelia 51
transversata, Philereme 50
treitschkiella, Antispila 156
tridens, Calamia
  ssp. occidentalis 150
trifasciata, Argynresthia 156, 248
trifoli, Lasiocampa 164
trigeminella, Coleophora 153
trigrannica, Charanyca 147
tripartita, Abrostola 151
triplasia, Abrostola 151
trochilella, Coleophora 153
truncicolella, Eudonia 154
trux, Agrotis
  ssp. maderensis 163
tulha, Coenonympha 51
  ssp. davus 146
  ssp. polydana 146
  ssp. scotica 146
tunbergella, Micropterix 156
typhae, Nonagria 147
tyres, Macrogaster 163
uliginosellus, Crambiis 155
ulmariae, Stigmella 156
undalis, Hellula 153
undulata, Rheumaptera 186
unionalis, Palpita 154, 155, 158, 163
unipuncta, Mythimna 147, 150, 163
urticae, Aglais 205, 245
  ab. nigra 143
  ab. pseudoconnexa 142
  ab. semichnusoides 143
venosata, Eupithecia
  ssp. plumbea 150
venustula, Elaphria 50, 152
versicolor, Oligia 150, 161
vespiformis, Synanthedon 147
vestigialis, Agrotis 165
vetulata, Philereme 50
vetusta, Xylena 151
viburnana, Aphelia 51
viciæ, Zygaena 247
villica, Arctia
  ssp. britannica 147, 148, 152, plate 2
viminetorum, Phyllonorycter 157
virgata, Phibalapteryx 147
virginiensis, Cynthia 76, 85
vitellina, Mythimna 150, 165
vulgata, Eupithecia
  ssp. clarenis 150
vulpinaria, Idaea 159
wockella, Coleophora 155
wollastoni, Phlogophora 163
woodiana, Celypha 155, 237
xenia, Phyllocnistis 156
xeranthemi, Cucullia 161
xiphia, Pararge 76, 80, 82, 83, plate 1
ziegerella, Cosmopterix 160
zohra, Cigaritis
  ssp. monticola 163
zophodactylus, Stenoptilia 153, 154, 156

OTHER INSECT ORDERS

COLLEMBOLA
Collembola sp. 201
Metaphorura affinis 189

DICTYOPTERA
Campion sp. 184
Ectobius pallidus 185
E. panzeri 185
Macropanesthia rhinoceros 185

MECOPTERA
Boreus hyemalis 242

NEUROPTERA
Euroleon nostras 185
Necrophilus 185
Nemoptera bipennis 185
Palmipenna pilicornis 185
Sisyra fuscata 206

ODONATA
Aeshna sp. 206
Calopteryx splendens 206
Coenagrion mercuriale 48
  C. puella 43
Enallagma cyathigerum 206
Libellula depressa 43
Pyrrophosa niphaphila 43

ORTHOPTERA
Chorthippus parallelus 206
Gryllotalpa gryllotalpa 33
Platycleis albopunctata 184
Stenobothrus lineatus 184
Tetrix undulata 48

PLECOPTERA
Dinotoperea sp. 185

RAPHIDIOPTERA
Atlantoraphidia maculicollis 43
Phaeostigma notata 43, 186
Xanthostigma xanthostigma 186
STREPSIPTERA
Styllops sp. 59, 64, 65
   S. melittae 57, 59, 64, 65

THYSANURA
Lepisma saccharina 206
Petrobius sp. 206
   P. brevisstylis 206
   P. maritimus 206

OTHER ANIMALS

ACTINARIA
Nematostella vectensis 186

AMPHIPODA
Gammarus sp. 209
Orchestia gammarida 209

ARACHNIDA
Araneus diadematus 206
Dismodicus fimbriatus 186
Dolomedes fimbriatus 186
Eutypus browningi 186
Gnaphosa lugubris 186
Haplodrassus minor 186
Larinioides sclopetarius 206, 208
Micaria pulcari 206
Pellenes tripunctatus 186
Phlegra fasciata 186
Salticus scenicus 207
Segestria florentina 207, 209
Sitticus inexpectatus 186
Segestria florentina 207, 209
S. melittae 57, 59, 64, 65

OTHER PABULA
Dung (various) 16, 33, 42, 46
Honeybee combs 173
Sheep’s wool 234

MOLLUSCA
Helix pomatia 49
Hygromia cinctella 209
Limax flavus 209
Testacella haliotidea 35
Thersites fraseri 182

MYRIAPODA
Polyxenus lagurus 207, 209

OTHER PLANTS

ACCAIA
160
Acer campestre 41
   A. pseudoplatanus 19, 37, 48, 172, 180, 202, 204, 219
Achillea millefolium 153, 172
Agapanthus praecox 78
Alium ursinum 219
Alnus 42, 48, 157, 204
   A. glutinosa 157, 171, 172
   A. incana 157
Althaea 172
   A. officinalis 172
Angelica archangelica 36, 202, 203, 204
Antennaria dioica 11, 12
Anthyllis vulneraria 47
Antirrhinum 160, 161
Artemisia maritima 76
Arctium minus minus 155
Artemisia maritima 141
   A. vulgaris 157, 158, 203
Asclepias curassavica 84
   A. fruticosa 84
Aster tripolium 141
Beta vulgaris 175
Betonica officinalis 155
Betonica officinalis 155
Betula 25, 39, 148, 157, 166, 167, 171, 172, 177, 181, 182, 232, 243
   B. pendula 156, 172
   B. pubescens 155, 162
Bidens tripartita 165
Brachypodium pinnatum 47
   B. sylvaticum 82
Brassica oleracea 77
Bromus erectus 47
Bryonia dioica 168
Buddleja 204
Buxus sempervirens 91
Calluna 156, 179
   C. vulgaris 167, 182
Campanula latifolia 184
Campylopus 154
Carduus 38, 160
   C. acanthoides 168
Carex 45, 154, 247
   C. acutiformis 202, 247
Potentilla reptans 49
Prunus 180
  P. persica 162
  P. spinosa 40, 157, 245
Pteridium aquilinum 39, 40, 82, 220
Pulicaria 154
  P. dyssenterica 166, 168, 174
Pyracantha 153
Pyrus 45
Quercus 18, 19, 37, 40, 41, 42, 43, 48, 148, 154, 158,
  160, 162, 169, 170, 172, 173, 174, 176, 177, 178,
  179, 182, 184, 213, 219, 247
  Q. ilex 164
  Q. petraea 135
  Q. robur 135, 157, 220
  Q. suber 175
Ranunculus 247
  R. ficaria 168
Reseda 183, 184, 205
  R. lutea 175
Rhamnus glandulosa 78
Rhododendron 166, 219, 239
Rosa 43, 167, 172
Rosmarinus 160
Rubus 89, 90, 247
  R. fruticosus 68, 220
Rumex 44, 161
Salix 37, 135, 166, 169, 171, 174, 177, 182, 184, 202,
  204, 213, 214, 244, 245
  S. fragilis 213, 214
  S. viminalis 157, 168
Sarothamnus scoparius 247
Saxifraga adscendens 154
  S. cespitosa 154
  S. hypnoides 153, 158
Senecio 158, 174, 229, 230
Seriphidium maritimum 172
Serratula tinctoria 168
Silene maritima 141
Sinapis arvensis 202
Smyrnium olusatrum 170
Solidago virgaurea 174
Sorbus aucuparia 40, 172
Sphagnum 41, 179, 235, 236, 237
Stachys officinalis 155
  S. sylvatica 154
Succisa pratensis 170
Swida 156
Symphytum 44, 155
Syringa 177
Tanacetum vulgare 175
Thymus 47, 245
Tilia 48, 170, 182
  T. vulgaris 157
Trifolium pratense 175
  T. repens 78, 95, 155
Tropaeolum majus 77
Typha latifolia 172, 202
Ulmus 171, 172
  U. glabra 137, 157
Urtica 201, 206
  U. dioica 44, 84
  U. morifolia 84
Vaccinium myrtillus 154
Verbascum nigrum 170
Viburnum lantana 157
Viola 39, 160
Viscum album 155, 237

ALGAE
Diplococcus 21, 29

LICHENS
Lecanora conizaeoides 21, 29
Parmelia glabratula 21

FUNGI
Boletus scaber 167
Bovista plumbea 172
Daldinia concentrica 201, 205
Ganoderma 171
Meetings of the Society are held regularly in London, at the rooms of the Royal Entomological Society, 41 Queen’s Gate, London SW7 and the well-known ANNUAL EXHIBITION is planned for Saturday 27 November 1999 at Imperial College, London SW7. Frequent Field Meetings are held at weekends in the summer. Visitors are welcome at all meetings. The current Programme Card can be had on application to the Secretary, J. Muggleton, at the address given below.

The Society maintains a library, and collections at its headquarters in Dinton Pastures, which are open to members on various advertised days each month, telephone 01189-321402 for the latest meeting news. The Society’s website is: http://www.BENHS.org.uk

Applications for membership to the Membership Secretary: A. Godfrey, 90 Bence Lane, Darton, Barnsley, South Yorkshire S75 5DA.

Subscriptions and changes of address to the Membership Secretary: R. D. Hawkins, 30d Meadowcroft Close, Horley, Surrey RH6 9EL.

Non-arrival of the Journal, faulty copies or other problems arising from distribution of the Journal or notices to the Distribution Secretary: D. Young, 9 Marten Place, Tilehurst, Reading, Berkshire RG31 6FB.

Orders for books and back numbers of the Journal and Proceedings to the Sales Secretary: G. Boyd, 91 Fullingdale Road, Northampton NN3 2PZ. Tel: 01604 410056.

General Enquiries to the Secretary: J. Muggleton, 30 Penton Road, Staines, Middlesex TW18 2LD. Tel: 01784-464537. email: jmuggleton@compuserve.com

Cover illustration: The sciomyzid fly Pherbellia knutsoni, from the Dipterists supper cake prepared by Diane Henshaw. photo: M. R. Wilson

NOTE: The Editor invites submission of photographs for black and white reproduction on the front covers of the journal. The subject matter is open, with an emphasis on aesthetic value rather than scientific novelty. Submissions can be in the form of colour or black and white prints or colour transparencies.
THE ACULEATE WASPS AND BEES (HYMENOPTERA: ACULEATA) OF THE AINSDALE–FORMBY SAND DUNES ON THE LANCASHIRE COAST COMPARED WITH OTHER NORTHERN SITES

MICHAEL E. ARCHER
University College of Ripon & York St. John, York Y031 7EX, UK

The main aims of this paper are, firstly, to give an account of the aculeate wasps and bees of the sand dunes of Ainsdale–Formby on the Lancashire coast, secondly, determine if the species list of the Ainsdale–Formby sand dunes is sufficiently complete to make comparisons with other sites, and thirdly, having shown the species list is sufficiently complete, to carry out comparisons at the community level with other north and north midland English sites.

The Ainsdale–Formby sand dunes are situated to the west of Ainsdale and Formby. Within the Ainsdale–Formby sand dunes the following sites have been sampled for aculeate wasps and bees: Birkdale Sandhills LNR (SD3013); Ainsdale Sandhills LNR (SD2912); Ainsdale Sand Dunes NNR (SD2911); National Trust Formby Point (SD2707); Lifeboat Road Formby Point (SD2706); Ravenmoels LNR (SD2706). These sites cover an area of about 940 ha, about 45% of the 2100 ha of the Sefton sand dunes (Atkinson & Houston, 1993).

The Ainsdale–Formby sand dunes consist of fore, yellow and grey dunes with wet and dry slacks and a small amount of salt marsh. Dune heath, shrubs (including sea-buckthorn), pine and deciduous trees are also present. Many of the pines on the seaward side are dead and, with extensive bramble patches, provide aerial nesting sites for aculeates. The bordering habitats are urban.

SOURCES OF RECORDS

The earliest records are given by Gardiner (1907), probably produced by B. Cooke, from the latter part of the nineteenth century. Although detailed localities are not given, ten species of solitary wasps and five species of solitary bees are from the Ainsdale–Formby sand dunes. All these species have been found subsequently.

Records have been obtained from specimens at the museums of Liverpool, Leeds and Manchester. Records from Liverpool museum were supplied by T. Mawdsley and C. Clee. The records are from 20 collectors (1930–1988) of whom H. Britten (1930–1964), C. M. Jones (1950–1969) and C. O'Toole (1962–1969) are the most important. Other specimens were examined by me at the museums of Leeds (A. Norris) and University of Manchester (C. Johnson). Relatively few records (from five collectors, 1907–1951) were found at Leeds. At Manchester, records from eight collectors (1906–1959) were found. The most important were those of H. Britten (1921–1947). Most museum records were derived from the following sites: National Trust Formby Point; Ainsdale NNR; probably Ainsdale LNR; and a few records from Birkdale LNR.

Kenneth-Booker (no date) produced a list of 60 aculeate wasp and bee species recorded during 1976 at Ainsdale NNR. This list was extended by five species in a letter sent to G. R. Else during 1981. Another listing of 79 aculeate wasp and bee species, covering the years 1975–1980, was sent to me by W. Kenneth-Booker (pers. comm., 1989). C. O'Toole sent a list of 73 aculeate wasp and bee species recorded from Ainsdale NNR (pers. comm., 1988).
I visited the Ainsdale Formby sand dunes on eleven days during 1983–1989. My visits were mainly to Ainsdale LNR, Ravenmoels LNR, Lifeboat Road Formby Point and National Trust Formby Point. I also have identified specimens collected by A. Godfrey from a visit to Ainsdale NNR during 1990.

In summary, 31 collectors have provided records from the Ainsdale–Formby sand dunes from 1906 until 1990, with a few records from the latter part of the nineteenth century. Most records were made from April until September with a few records from February, March and October.

Names and the ordering of species in Appendix 1 are according to Kloet & Hincks (1978). However, where there have been name changes since Kloet & Hincks the new species names are used but the old species are indicated in brackets.

**Species present**

A total of 110 species (94 solitary and 16 social species) has been recorded (Appendix 1). Since 1970, 19 of these species have not been recorded (Appendix 1). Most of these 19 species probably are still present, but the following species, with appropriate reference in brackets, almost certainly will have been lost: Ancistrocerus nigricornis (Curtis) (Archer, 1988), Oxybelus mandibularis Dahlbom (Edwards, 1977), Lasioglossum laevigatum (Kirby) and Coelioxys quadridentata (L.) (Else, in prep.).

**Species-area relationship**

One of the problems in the study of any site is the difficulty of knowing when the species list is sufficiently complete so that comparisons with other sites may reasonably be carried out. One way to resolve this is the use of the species–area relationship, where the number of species and the area of sites, both expressed as natural logarithms (ln), can show a positive linear relationship (Usher, 1986). If the number of species in relation to the area of a site falls within the range of other sites which show a statistically significant species–area relationship, then the site may reasonably be compared with other sites. If the number of species in relation to the area of a site falls below the values of the other sites then this could indicate either many more species could be found at that site, or that the site consists of habitats which are particularly unfavourable for aculeate wasps and bees.

As an example of a favourable site where the species list is not sufficiently complete, Archer (1996c) found that the number of species of solitary aculeate wasps and bees from Sark fell well below the species–area relationship shown by the other Channel Islands. He suggested that about a further 35 species could be found on Sark to bring its number of species relative to its area to the level of species–area relationship of the other islands. J. C. Beavis (pers. comm., 1997) has subsequently succeeded in finding 29 of the estimated 35 species on Sark.

Bog and closed woodland may be unfavourable habitats for aculeate wasps and bees and would be expected to have fewer species than the area of a site would indicate. For example, Askham Bog with an area of 49 ha should have about 71 species of solitary wasps and bees as calculated from the species–area relationship indicated in Fig. 1. Archer (1987) found that only 31 species have been recorded from this site, which is only about 44% of the number of species expected. Much of Askham Bog consists of bog and closed woodland.

The species–area relationship will be investigated with data from 18 sites from the north and north midlands of England (Table 1). Restriction of the comparison sites to north and north midlands sites is necessary because it is known that species–area
Fig. 1. A species–area relationship plot of 19 sites from the north and north midlands of England. A-F, Ainsdale–Formby sand dunes.

Fig. 2. A species quality score–area relationship plot of 19 sites from the north and north midlands of England. A-F, Ainsdale–Formby sand dunes.
Table 1. Grid references (G.R.), habitat characteristics*, cleptoparasitic loads (CL) and aerial nester frequencies (AF) of the solitary species, of 18 north and north midland English sites

<table>
<thead>
<tr>
<th>Site name</th>
<th>G.R.</th>
<th>Habitat</th>
<th>CL</th>
<th>Wasps</th>
<th>Bees</th>
<th>AF</th>
<th>Wasps</th>
<th>Bees</th>
<th>Reference to Archer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allerthorpe Common (pre-conifered)</td>
<td>SE74</td>
<td>S</td>
<td>16.9</td>
<td>32.8</td>
<td></td>
<td></td>
<td>45.3</td>
<td>16.3</td>
<td>1989</td>
</tr>
<tr>
<td>Blaxton Common</td>
<td>SE60</td>
<td>S</td>
<td>15.0</td>
<td>26.5</td>
<td></td>
<td></td>
<td>43.1</td>
<td>13.9</td>
<td>1995</td>
</tr>
<tr>
<td>Burton Leonard Lime Quarries</td>
<td>SE36</td>
<td>Ca</td>
<td>16.7</td>
<td>25.8</td>
<td></td>
<td></td>
<td>68.0</td>
<td>13.0</td>
<td>1997</td>
</tr>
<tr>
<td>Charnwood Forest</td>
<td>SK41, SK51, SK50</td>
<td>S</td>
<td>18.1</td>
<td>27.0</td>
<td></td>
<td></td>
<td>71.2</td>
<td>22.2</td>
<td>1992b</td>
</tr>
<tr>
<td>Cave Wold</td>
<td>SE93</td>
<td>Ca</td>
<td>16.7</td>
<td>32.4</td>
<td></td>
<td></td>
<td>56.0</td>
<td>13.0</td>
<td>1997</td>
</tr>
<tr>
<td>Cornelian Bay</td>
<td>TA08</td>
<td>Cl</td>
<td>16.7</td>
<td>21.7</td>
<td></td>
<td></td>
<td>56.0</td>
<td>11.1</td>
<td>Unpub.</td>
</tr>
<tr>
<td>Crow Wood</td>
<td>SK69</td>
<td>S</td>
<td>16.9</td>
<td>28.9</td>
<td></td>
<td></td>
<td>20.4</td>
<td>9.4</td>
<td>1995</td>
</tr>
<tr>
<td>Duncombe Park</td>
<td>SE68</td>
<td>Ca</td>
<td>20.0</td>
<td>17.2</td>
<td></td>
<td></td>
<td>84.4</td>
<td>16.7</td>
<td>1993</td>
</tr>
<tr>
<td>Holmehouse Wood</td>
<td>SE04</td>
<td>Cl</td>
<td>10.3</td>
<td>31.6</td>
<td></td>
<td></td>
<td>53.8</td>
<td>7.7</td>
<td>Unpub.</td>
</tr>
<tr>
<td>Keswick Fitts</td>
<td>SE34</td>
<td>Si</td>
<td>22.2</td>
<td>30.0</td>
<td></td>
<td></td>
<td>67.9</td>
<td>21.4</td>
<td>Unpub.</td>
</tr>
<tr>
<td>Pompocoi</td>
<td>SE34</td>
<td>S</td>
<td>20.0</td>
<td>36.6</td>
<td></td>
<td></td>
<td>20.0</td>
<td>8.0</td>
<td>1985</td>
</tr>
<tr>
<td>Risby Warren</td>
<td>SE91</td>
<td>S</td>
<td>17.2</td>
<td>29.4</td>
<td></td>
<td></td>
<td>12.5</td>
<td>8.3</td>
<td>1994</td>
</tr>
<tr>
<td>Sherwood Forest</td>
<td>SK66</td>
<td>S</td>
<td>17.6</td>
<td>25.0</td>
<td></td>
<td></td>
<td>47.6</td>
<td>19.4</td>
<td>1996e</td>
</tr>
<tr>
<td>Shipley Glen</td>
<td>SE13</td>
<td>S</td>
<td>15.6</td>
<td>34.9</td>
<td></td>
<td></td>
<td>56.6</td>
<td>7.1</td>
<td>1996d</td>
</tr>
<tr>
<td>Skipwith Common</td>
<td>SE63</td>
<td>S</td>
<td>13.2</td>
<td>35.5</td>
<td></td>
<td></td>
<td>42.4</td>
<td>30.0</td>
<td>1992a</td>
</tr>
<tr>
<td>Spurn Point</td>
<td>TA41</td>
<td>S</td>
<td>16.2</td>
<td>25.6</td>
<td></td>
<td></td>
<td>38.7</td>
<td>17.2</td>
<td>Unpub.</td>
</tr>
<tr>
<td>Strensall Common</td>
<td>SE65</td>
<td>S</td>
<td>18.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td>41.5</td>
<td>8.0</td>
<td>1988</td>
</tr>
<tr>
<td>Swinecar Plantation</td>
<td>SE65</td>
<td>S</td>
<td>16.7</td>
<td>34.8</td>
<td></td>
<td></td>
<td>0.0</td>
<td>6.7</td>
<td>1984</td>
</tr>
</tbody>
</table>

* S sandy, Ca calcareous, Cl clay, Si silty.

relationship varies with latitude (Archer & Burn, 1995, Archer, 1996c). The species–area relationships are based on the species of solitary wasps and bees.

The species–area relationship of the 19 sites, including the Ainsdale–Formby sand dunes, is shown in Fig. 1. The dots for the Ainsdale–Formby sand dunes falls within the range of the 18 sites, and so the species list from the Ainsdale–Formby sand dunes can be considered sufficiently complete to make valid comparisons with other sites.

The correlation coefficient of the species–area relationship of the 19 sites indicates a highly significant linear relationship (r = 0.88, p < 0.001) with 77% of the variation of the number of species between sites being explained by the variation in the area of the sites. The species–area regression equation is: ln number of species = 3.84 + 0.11*ln area (ha). Two other statistics from this regression equation are: 1. the number of species of solitary aculeate wasps and bees expected to be found on one ha is 47 (anti-ln 3.84) and, 2. to double the number of solitary species of aculeate wasps and bees the area would need to be increased about 475-fold (2 raised to the power of 1/0.11).

Possible reasons why the number of species should increase with increase in area are discussed by Archer & Burn (1995).

The 19 sites used for Fig. 1 are mainly sandy sites but also include calcareous sites: Burton Leonard Lime Quarries and Cave Wold, Duncombe Park; clay sites: Holmehouse Wood and Cornelian Bay; and silty river margin sites; Keswick Fitts (Table 1). Clearly the traditional belief that sandy sites have a higher species richness than non-sandy sites is not upheld. Probably what is more important is for a site to
have the particular resources needed by aculeate species. Morris (1997) gave a list of such resources: bare, dry and friable soil in sunny situations for subterranean nesters; dead plant stems or dead wood in sunny situations for aerial nesters; and ruderal plant communities and particular flower species as a source of pollen for oligolectic bees. To this list may be added other specific nesting sites, such as snail shells, rock surfaces in sunny situations, crevices in walls or other bare surfaces; specific nest building materials needed by some species, e.g. resin, cottony down of leaves, petals, clay: specific types of prey for the larvae of species of solitary wasps; and sources of nectar, either floral or extra-floral. It is possible for non-sandy, as well as sandy sites to contain these resources.

**Species quality**

Information about the status and quality scoring (Archer, 1996a) of aculeate wasps and bees is given in Shirt (1987), Falk (1991), and Archer (1996b, 1997a, 1997b, 1998a). Archer's national statuses (Appendix 2) will be used since these statuses use the new information from the *Newsletters* of the Bees, Wasps and Ants Recording Society (BWARS) and consider all species, not just the RDB and nationally scarce species. Caution must be exercised in the use of quality scoring since the status of a species is not fixed and needs to be kept under constant review. The very rare, rare and scarce species are the high quality species. Seventeen high quality species have been recorded from the Ainsdale–Formby sand dunes, although only 14 species have been recorded from 1970 onwards (Appendix 1).

Each solitary species can be given a status value, so that a quality score for the Ainsdale–Formby sand dunes can be calculated (Table 2). Dividing the quality score by the number of species gives the species quality score. The species quality score for both All Records and 1970 Records Onwards is the same (3.8, Table 2).

How does this species quality score compare with those from the other 18 sites?

**Species quality score-area relationships**

A plot of species quality scores versus the area (in natural logarithms) for the 19 sites from the north and north midlands of England, including the Ainsdale–Formby sand dunes, is shown in Fig. 2. The correlation coefficient is not significant (r = 0.45, p > 0.05), and only 20% of the variation of species quality scores between sites is

<table>
<thead>
<tr>
<th>Status</th>
<th>Status Value (A)</th>
<th>No. species (B)</th>
<th>Quality Scores (A*B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AR</td>
<td>OR</td>
</tr>
<tr>
<td>Universal</td>
<td>1</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td>Widespread</td>
<td>2</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Restricted</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Scarce</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Rare</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Very Rare</td>
<td>32</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The Archer national quality scores of the species of solitary wasps and bees recorded from the Ainsdale–Formby sand dunes, for All Records (AR) and 1970 Onwards Records (OR) (Species quality score 3.8 for All Records and 1970 Onwards Records)
explained by the variation in the area of sites. These observations would seem to indicate that species quality scores are relatively independent of site area. Nevertheless, within the geographical area of the north and north midlands of England, the species quality score for the Ainsdale–Formby sand dunes is the highest yet recorded (Fig. 2). The reason for this high score, at present, is unknown.

Cleptoparasitic Load

The cleptoparasitic load (CL) is the percentage of aculeate species that are cleptoparasites (or parasitoids) on other host aculeates. Wcislo (1987) showed that parasite behaviour among aculeate Hymenoptera correlated with geographical latitude. Thus the parasitic rates are higher in temperate regions as host populations are more synchronized in their life-history characteristics. From a review of the literature Wcislo (1987) found the CLs in Europe for bees varied between 16% and 33%, a range of 17%.

The CLs for the solitary bees from north and north midlands sites vary between 22% and 37% (Table 1) (except for Duncombe Park), a range of 15%. The range of values of CL for the English sites is similar to the wider European sites (Wcislo, 1987). The low CL for Duncombe Park is due to the loss of all Sphecodes species from this site (Archer, 1993). The CL for the solitary species of bees from the Ainsdale–Formby sand dunes (Table 3) falls within this range.

Wcislo (1987) gives no CL values for wasps. However, for the north and north midland sites, CL values for the solitary wasps have been found to vary between 10% and 22% (Table 1). The narrow range of this variation indicates that the argument Wcislo (1987) developed for the bees also applies to the solitary wasps. The CL for the solitary species of wasps from the Ainsdale–Formby sand dunes (Table 3) falls within this range.

Archer & Burn (1995) discussed why the CLs for the solitary bees are higher than the CLs for the solitary wasps. They argue that it is probably a consequence of food-chain relationships.

Aerial Nester Frequency

The aerial nester frequency (AF) is the percentage of host aculeate species that have aerial nest sites. Aerial nesters used old beetle burrows in dead wood, central stem cavities, e.g. bramble, old snail shells, or crevices in cob walls, old mortar or exposed on the surface of rock or other hard material. Subterranean nesters nest in the soil, usually in burrows dug by themselves, but sometimes holes and crevices are used after being altered.

Table 3. The relative frequency of the cleptoparasitic (or parasitoid) species among the species of solitary wasps and bees recorded from Ainsdale–Formby sand dunes

<table>
<thead>
<tr>
<th></th>
<th>No. hosts (H)</th>
<th>No. cleptoparasites (C)</th>
<th>Cleptoparasitic Load CL = 100*C/(H + C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solitary wasps*</td>
<td>45</td>
<td>8</td>
<td>15.1</td>
</tr>
<tr>
<td>Solitary bees</td>
<td>30</td>
<td>10</td>
<td>25.0</td>
</tr>
</tbody>
</table>

*Cleptes nitidulus* excluded as not a parasitoid of an aculeate.
Table 4. The nesting habits of the host species of solitary wasps and bees recorded from Ainsdale-Formby sand dunes

<table>
<thead>
<tr>
<th></th>
<th>No. aerial nesters (A)</th>
<th>No. subterranean nesters (S)</th>
<th>Aerial nester frequency AF = 100*A(A + S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solitary wasps</td>
<td>18</td>
<td>27</td>
<td>40.0</td>
</tr>
<tr>
<td>Solitary bees</td>
<td>7</td>
<td>23</td>
<td>23.3</td>
</tr>
</tbody>
</table>

The AFs for the solitary wasps from the north and north midlands sites vary between 0% and 84%, and for the solitary bees between 7% and 22% (Table 1). For the Ainsdale-Formby sand dunes the AF for the solitary wasps falls into the middle of the range of the English sites, but for the solitary bees the range is extended slightly upwards (Table 4). The Ainsdale-Formby sand dunes are relatively richer in aerial-nesting solitary bees. An investigation of why this should be so remains to be done.

The AF for the solitary wasps is higher than the AF for the solitary bees (Table 4). Why should this be so?

Archer (1990) found that the summer abundance of solitary wasps was more sensitive to summer weather conditions than solitary bees. Solitary wasp abundance was positively related to higher mean temperature and hours of sunshine and decreases in rainfall. Lomholdt (1975) showed that aerial nester frequency increased with increasing latitude for the solitary wasps (Sphecidae, 28% in France and 79% in northern Norway) along a decreasing warmth gradient. Perhaps the species of solitary wasps in order to take advantage of any warmth tend to have aerial nesting sites, since such sites are likely to warm up earlier in the day and stay warmer for a longer period of time than subterranean nesters? No investigation of this hypothesis has taken place.

**Summary**

In comparison with the other sites from the north and north midlands the community of species of solitary wasps and bees from the Ainsdale-Formby sand dunes:

- Has the expected number of species for the area of the site, and so can properly be compared with the other sites.
- Has a higher species quality score than the other sites.
- Has similar cleptoparasitic load to those of other sites as predicted by Wcislo (1987).
- Has an average aerial nester frequency (AF) for the solitary wasps and a higher AF for the solitary bees.

**References**


APPENDIX 1

A list of the aculeate Hymenoptera recorded from the Ainsdale-Formby sand dunes. V=very rare, R=rare. S=Scarce. RE=Restricted, W=Widespread, U=Universal species—see Appendix 2 for definitions. *Species not recorded from 1970 onwards.

Chrysididae—Omalus auratus (L.) (W), Hedychridium ardens (Latreille in Coquebert) (U), H. cupreum (Dahlbom) (=integrum) (S), C. ignita (L.) (U), C. impressa Schenck (U)*, Cleptes nitidulus (Fab.) (R).

Mutilidae—Myrmosa atra Panzer (W)*.

Pompilidae—Prioritynemis parvula Dahlbom (U), Pompilus cinereus (Fab.) (U), Araclonospila aniceps (Wesmael) (A), A. trivialis (Dahlbom) (W), A. wesmaeli (Thomson) (R), Evagetes crassicornis (Shuckard) (U), Anoplus nigerrimus (Scopoli) (U), A. infuscatus (Vander Linden) (W), Episyrnon rufipes (L.) (W), Ceropales maculata (Fab.) (R).

Eumenidae—Ancistrocerus nigricornis (Curtis) (W)*, A. parietiun (L.) (U), A. parietum (L.) (U), A. scoticus (Curtis) (U)*, Symmrophus bifasciatus (L.) (=mutinensis) (U).

Vespidae—Dolichovespula sylvestris (Scopoli), Vespuila rufo (L.), V. germanica (Fab.), V. vulgaris (L.).

Sphecidae—Astata pinguis (Dahlbom) (U), Tachysphex pompiliformis (Panzer) (U), T. nitidus (Vander Linden) (=unicolor) (S), Crabro cribriarius (L.) (U), C. peltarius (Schreber) (U), Coccocerus tarsatus (Shuckard) (U), C. wesmaeli (Vander Linden) (U), C. annulipes (Lepeletier & Brulé) (U), C. megacephalus (Rossius) (U), C. quadrirmaculatus (Fab.) (W), Ectemnius lapidarius (Panzer) (U), E. continuus (Fab.) (U), Oxybelus argentatus Curtis (S)*, O. mandibularis Dahlbom (S)*, O. uniglumis (L.) (U), Psen littoralis (Bordroit) (V), P. bruxellensis (Bordroit) (R), P. equestris (Fab.) (U), Spilomena troglodytes (Vander Linden) (W)*, Pemphredon lugubris (Fab.) (U), P. inornatus Say (U), P. leithifer (Shuckard) (U), P. morio Vander Linden (S), Diodontus minutus (Fab.) (U), D. tristis (Vander Linden) (W), Passaloecus corniger Shuckard (W), P. gracilis (Curtis) (W)*, P. insignis (Vander Linden) (W), Ammophila sabulosa (L.) (W), Podalonia affinis (Kirby) (R), P. hirsuta (Scopoli) (S), Mellinus arvensis (L.) (U).
Colletidae—*Colletes fodiens* (Geoffroy in Fourcroy) (W), *C. marginatus* Smith (S), *C. similis* Schenck (W)*, C. succinctus* (L.) (U)*, *C. cunicularis* (L.) (V), *Hylaecus communis* Nylander (W), *H. brevicornis* Nylander (W), *H. hyalinatus* Smith (W)*.

Andrenidae—*Andrena clarkella* (Kirby) (U)*, *A. fulva* (Müller in Allioni) (U), *A. scotica* Perkins (U), *A. nigroaenea* (Kirby) (U), *A. denticulata* (Kirby) (U), *A. haemorrhhoa* (Fab.) (U)*, *A. barbilabris* (Kirby) (U).

Halictidae—*Halictus rubicundus* (Christ) (U), *LasioGLOSSUM laevigatum* (Kirby) (RE)*, *L. albipes* (Fab.) (U), *L. calceatum* (Scopoli) (U)*, *L. nitidiusculus* (Kirby) (U), *L. punctatissimum* (Schenck) (W), *L. villosulum* (Kirby) (U), *Sphecodes ferruginatus* von Hagens (S), *S. geoffrellus* (Kirby) (= *fasciatus*) (U), *S. pellucidus* Smith (U).


Anthophoridae—*Nomada marshamella* (Kirby) (U), *N. rufipes* Fab. (U), *Epeolus cruciger* (Panzer) (W), *E. variegatus* (L.) (U).

Apidae—*Bombus lucorum* (L.), *B. terrestris* (L.), *B. lapidarius* (L.), *B. pratorum* (L.), *B. hortorum* (L.), *B. pascuorum* (Scopoli), *Psithyrus barbutellus* (Kirby)*, P. bohemicus* (Seidl), *P. campestris* (Panzer), *P. sylvestris* Lepeletier, *P. vestalis* (Geoffroy in Fourcroy)*, *Apis mellifera* L.

**APPENDIX 2**

The national statuses of species of solitary aculeate wasps and bees according to Archer, for England, Wales and Scotland, but excluding Ireland and the Channel Islands.

Very rare—Species found in 1–15 10 km squares. 1970 onwards.

Rare—Species found in 16–30 10 km squares. 1970 onwards.

Scarce—Species found in 31–70 10 km squares. 1970 onwards.

Restricted, Widespread and Universal species are found in more than 70 km squares. 1970 onwards.

Restricted—Species only found in the Institute of Terrestrial Ecology (I.T.E) Land Classification groups 1 and 2 (Pienkowski *et al.,* 1996)(Southern England, South-West and Southern Coasts). Roughly this is about half of England.

Widespread—Species found in I.T.E. Land Classification groups 3 and 4 (Midland Lowlands and Central Coasts) besides groups 1 and 2. Roughly this is about three-quarters of England, lowland Wales and south-west Scotland. Northumbria is excluded.

Strictly these definitions of restricted and widespread species are for southern restricted and widespread species. In practice northern restricted and widespread species can occur.

Universal—Species found throughout England, Wales and more extensively in Scotland, including further I.T.E. Land Classification groups 5 and 6 (Low Moorlands and Northern Uplands), but particularly groups 7 and 8 (Northern Lowlands and North-western Seaboard).

It is hoped that the statuses above, with those of Shirt (1987) and Falk (1991), and the IUCN statuses (IUCN Species Survival Commission 1994, Ball 1996) will be harmonized in the near future.
While collecting near the entrance to Gleann Móir (NO0076), Fealar, Perthshire (VC 89) on 25.ix.1997, a rosette of the plant Antennaria dioica was found, in which several of the leaves contained basal mines. Later careful dismantling of the rosette revealed that some 9 leaves were mined, apparently by a single larva moving from leaf to leaf. Each leaf had between 2 and 4 broad diverging feeding tracks extending from the petiolar up into the lamina of the leaf. These tracks rarely went more than two-thirds of the way up towards the leaf apex. The frass was concentrated in the petiolar part of the mine (Fig. 1). Positioned vertically at the centre of the rosette was a single vacated agromyzid puparium.

Two species of leaf-mining agromyzid are known from Antennaria dioica in Europe, namely:

- Ophiomyia gnaphalii Hering, 1949
- Phytomyza kyffhusana Hering, 1928

Both species also mine Gnaphalium sp. The differences in the mines of the two species in Gnaphalium sp. are discussed by Hering (1949). However, Spencer (1972) describes the mine of O. gnaphalii in Gnaphalium as an “external stem mine” without any reference to the mine extending into several leaves. The mine of O. gnaphalii in Antennaria dioica was first described by Buhr (1960) and later by Spencer (1990). The mine of P. kyffhusana (under the name P. gnaphalii) in A. dioica is discussed by Hering (1963). On the basis of these descriptions and consultation of the appropriate mines in the Hering Herbarium (The Natural History Museum, London), the Fealar mines belonged to Ophiomyia gnaphalii. Furthermore Dr K. A. Spencer confirmed that the puparium was that of an Ophiomyia species. The eight lobed posterior spiracles of the puparium of O. gnaphalii (Fig. 2) have not previously been described or illustrated, but differ conspicuously from those of P. kyffhusana which have 16–18 lobes each (de Meijere, 1937; Hering, 1963). The mines and puparium are now in the collections of The National Museums of Scotland, Edinburgh.

Fig. 1. Part of the mine of Ophiomyia gnaphalii in a leaf of Antennaria dioica from Fealar.
Fig. 2. (a) Scanning electron micrograph of a dorsal view of the right posterior spiracles of the puparium of *Ophiomyia gnaphali*. (b) Diagram of the same posterior spiracles, to the same scale, with the eight individual spiracular openings indicated by arrows. The scale bar represents 10 μm.

The present record of *O. gnaphali* is the first record of the occurrence of this species in *Antennaria dioica* in Britain and only the second British record. It was first recorded in Britain from a single female fly taken on 18.vi.1902 at Ross, Herefordshire by Colonel Yerbury (Spencer, 1972). Abroad, the species seems to be known only from Germany.

**ACKNOWLEDGEMENTS**

I am very grateful to the following people: Stephen Mitchell and Colin Warwick (Royal (Dick) School of Veterinary Studies) for the scanning electron micrograph, Kenneth Spencer (Cornwall) for advice and examination of the puparium, James and Chloe Teacher for their kind hospitality at Fealar, Michael von Tschirnhaus (University of Bielefeld) for help with literature and translation and Kevin Tuck (Natural History Museum, London) for assistance with Hering’s Herbarium specimens.

**REFERENCES**

NEST DESERTION BY BLACKBIRDS FOLLOWING DEFOLIAION
OF AN ASH TREE BY SAWFLY LARVAE

ROBERT A. CHEKE

Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB.

NEIL D. SPRINGATE
c/o Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD.

In late May 1993, a pair of blackbirds Turdus merula L. built a nest, at a height of about 7 m, in an ash tree Fraxinus excelsior L. (Angiospermae: Oleaceae) in an urban garden at the rear of a block of flats in Tooting, south-west London. When nearing completion, the nest was almost invisible amongst the foliage. However, as had occurred during the early summer of 1992, the tree was attacked by innumerable sawfly larvae (Insecta: Hymenoptera), which proceeded to defoliate the tree from the ground upwards.

Although it was not possible to rear the larvae to adults, many were collected in 70% ethanol. With the aid of a key to larvae (Lorenz & Kraus, 1957) and comparisons with material in the Natural History Museum (NHM), London, they were identified as Tomostethus nigrutus (Fab.) (Hymenoptera: Tenthredinidae, Blennocampinae). Specimens and photographs of the larvae and the affected tree have been deposited at the NHM.

At first, both sexes of the blackbirds benefited from feeding on the larvae but, soon, they were overwhelmed and, by 4th June, the pair was defending a nest wholly exposed in an almost bare tree. Nevertheless, the female persevered and at 18.30 hours was sitting in the nest, presumably on eggs, but this could not be confirmed. At 09.30 on the following day the female was again sitting tight. At 10.50 the male was feeding on the larvae at the top of the tree and at 10.55 the female was observed pecking at larvae, whilst still in the nest. She then left the nest to feed in the bare branches before returning, activities repeated throughout the day, and was last seen on the nest at 17.00 that evening. The following day both birds were feeding in the tree and, at 13.15, the female inspected the nest but did not sit in it. The female was again present in the tree at 13.00 on 7 June but, thereafter, the site was abandoned. The birds appeared to have given up their nesting attempt, perhaps for fear of predation (principally by domestic cats) in their exposed position, but it was also possible that the nest had been visited by renowned egg thieves, such as jays Garrulus glandarius (L.), magpies Pica pica (L.) or carrion crows Corvus corone L., (all Passeriformes: Corvidae), all of which are common in the area. In 1997, the tree was felled, preventing further investigation.

T. nigrutus belongs in a small genus of Holarctic sawflies of about 12 species, placed in the tribe Tomostethini of the Blennocampinae (Benson, 1952), with their main region of diversity in eastern Asia (Smith, 1969). British species are keyed in Benson (1952) and those from the Nearctic in Smith (1969). T. nigrutus has a wide distribution throughout the Palaearctic, occurring from the British Isles (Eire and Northern Ireland excepted) (O'Connor et al., 1997) in the west, to eastern Siberia, Kamchatka, Sakhalin, Korea and Japan (Honshu) in the east; and from Sweden and Finland in the north to North Africa and Turkey in the south (Tsinovskij, 1953; Benson, 1968; Novák, 1976; Zhelokhovtsev, 1988; Hirashima, 1989; Liston, 1995; Zhelokhovtsev & Zinovjev, 1997).
The known larvae of *Tomostethus* are associated with Oleaceae and Juglandaceae (Benson, 1952); those of *T. nigritus* have been recorded from *F. excelsior* L. (Benson, 1952) and from *F. mandshurica* Rupr. var. *japonica* Maxim, in northern Japan (Okutani, 1967), both species belonging to section *Fraxinus* sensu Vassilijev (Vassilijev, 1952, as 'sect. *Bunelioideae*'). Zirngiebl’s suggestion (cited in Hoop, 1983) that the larvae may feed on *Ligustrum* L. is unconfirmed. The distribution of *T. nigritus* considerably exceeds the natural range of these two species, but seems to fall within the present range of sect. *Fraxinus* as a whole, allowing for timber plantings beyond the natural range in Russia (L. Springate, *pers. comm*.), suggesting exploitation of a wider range of hosts but only within that section.

*T. nigritus* is univoltine, with adults active between April and June, often alighting on opening buds of ash (Benson, 1940, 1952). Eggs are laid in small, pocket-like, openings on the newly-developing leaves (Novák, 1976). Larvae are gregarious and early instars may be found from May to June (Lorenz & Kraus, 1957). These perforate the leaves and feed, leaving only a small area between the veins; later instar and mature larvae consume the entire leaf, apart from the mid-rib (Novák, 1976). Thus, its pattern of damage to leaves appears to be quite different from that of another defoliator of *Fraxinus* spp., *Macrophya punctualbunum* (L.) (Tenthredinidae: Tenthredininae) which is characterised by 'rasping' marks on the leaf’s upper epidermis caused by the adult insect, and circular holes made by the larvae, when it attacks *Ligustrum ovalifolium* Hask. (cited as *L. californicum* hort. ex Decn.), the common hedging privet, a native of Japan (Wheeler & Hoebeke, 1994). *T. nigritus* was, however, classified as a leaf-edge feeder in a recent study on the feeding activity of some European sawflies (Heitland & Pschorn-Walcher, 1993), but the reason for this placement is unclear. Four and five larval instars are recorded for the males and females, respectively (Mrkva, 1965; Novák, 1976). Mature larvae drop from the ash trees, spin a light green pupal case (darkening to black, subsequently) and overwinter in the soil, emerging the following spring. Adults and larva are illustrated and other aspects of the species’ biology, including its behaviour and range of parasitoids, are discussed in detail by Mrkva (1965).

*T. nigritus* is renowned as a species which may occur as an outbreak, for example, at Shirley, near Southampton, Hampshire during 1937 (Benson, 1952). The destructive defoliation by its larvae has been known for more than a century (Kaltenbach, 1874) and, in many parts of its range, it was and is considered a serious pest, for example, in western Europe (Escherich, 1941; Francke-Grosmann, 1953; Klausnitzer, 1978), southern Russia (Sharov, 1956), Sakhalin and Korea (Novák, 1976). However, its outbreaks appear to be sporadic rather than regular, as are those of the related Nearctic species, *T. multivicinut* (Rohwer), which was considered to have become a light-to-medium outbreak only thrice during 59 years in the states of Minnesota and Wisconsin (Haack & Mattson, 1993).

Although sawflies and other herbivorous insects can defoliate trees to the point of destruction (e.g., Berryman, 1987; Gauld & Bolton, 1988; Larsson et al., 1993), it is unlikely that the defoliation *per se* enforced desertion by the nesting pair of blackbirds. No accounts of other birds abandoning their nests after having had them so completely exposed to predators and egg-thieves, following the actions of insect herbivores, have been traced. Given the widespread distributions of both *T. nigritus* and its hosts within *Fraxinus* noted above, it is surprising that such events have not been recorded, even more so when sawfly, tree and nesting bird are common in urban environments. However, it is possible that birds nesting in the upper crowns of coniferous trees may encounter similar defoliations by other species of gregarious sawflies (e.g., species of *Pamphiliidae* and *Diprionidae*) and Lepidoptera.
ACKNOWLEDGEMENTS

Lawrie S. Springate (Royal Botanic Garden, Edinburgh) is thanked for providing information on the distribution of Fraxinus and for checking botanical nomenclature, as is David Sheppard (English Nature, Peterborough) for supplying information and literature on Tomostethus.

REFERENCES


Hirashima, Y. 1989 (ed.). [A check list of Japanese insects] (Fukuoka: Kyushu University, Faculty of Agriculture, Entomological Laboratory), 1767 pp. [In Japanese.]


Sharov, A. G. 1956. [The black ash sawfly (Tomostethus nigritus F.), a pest of ash in afforestation], Zoologicheskij Zhurnal, 35: 719–723. [In Russian]


Zhelokhovstev, A. N. and Zinovjev, A. G. 1997. [A list of sawflies and horntails (Hymenoptera, Sympyta) of the fauna of Russia and the adjacent territories. II], Entomologicheskiye Obozreniye, 75: 357–379. [In Russian]

SHORT COMMUNICATION

Observations of some uncommon Dung Beetles—Geotrupes pyraneus (Charpentier) (Geotrupidae) (Na) is locally abundant on Thursley NNR, Surrey (SU94), where it is regularly found near dog and horse dung along the bridleways and paths in late May and June. In 1998 a second emergence occurred in late August, when adults were again active and abundant on the 27th, and many dead and moribund individuals were picked up by Wendy Denton and Julia Fry on the 30th. This is the first time I have encountered this species in late summer, despite monthly visits to Thursley for over 10 years. It is intriguing that this should happen in a relatively poor summer, and not in any of the long series of warmer ones over the study period. A single specimen was picked up dead in the New Forest in August (Roger Booth, pers. comm.).

Aphodius porcus (Fab.) (Scarabaeidae) (Nb): I found a single female at Cholderton, N. Hants (SU2442) on 1.x.98. I excavated a Geotrupes burrow (probably made by G. spiniger (Marsham)) in an improved pasture field. The burrow went down at an angle of c.30° to a plug of moulded cow dung the size of a golf ball which was placed on the interface of the loose soil and hard chalk bedrock at c. 30 cm. On opening this dung I found a small round, pea-sized cavity in which was found the female A. porcus and the remains of a Geotrupes larva. This species has been reported as being a cuckoo parasite of Geotrupes stercorarius (L.) (Chapman, 1869, Entomologist’s Monthly Magazine, 5: 273–6), and may also overwinter in the burrows. Geotrupes spiniger was exceedingly abundant on the Cholderton Estate, with adults under most large dung pats, and a female G. mutator (Marsham) (Nb) was also found under ‘sloppy’ sheep dung.

Fox (Vulpes) and Little Owl (Athene noctua) pellets in the vicinity appeared to be made up almost entirely of the remains of Geotrupes adults.

Thanks to Dr David Clements & Dr Martin Drake for organising this work, Countryside Council for Wales for funding the research into the Hornet Robberfly Asilus crabroniformis, and Henry Edmonds for allowing us to work at Cholderton.— Dr JONTY DENTON, 26 Bow St, Alton, Hants GU34 1NY.
OBSERVATIONS ON REARING *LUFFIA* SPP. (LEPIDOPTERA: PSYCHIDAE) UNDER CONTROLLED ENVIRONMENTAL CONDITIONS, WITH TAXONOMIC NOTES

I. SIMS

*WRC, Henley Road, Medmenham, Marlow, Bucks SL7 2HD.*

This note describes some observations made while rearing the two British “species” of moth belonging to the genus *Luffia* Tutt, namely *Luffia ferchaultella* (Stephens) and *L. lapidella* (Goeze). These observations were made during work to assess the suitability of *L. ferchaultella* for monitoring the toxicological effects of atmospheric pollution (Sims and Reynolds, 1999). They may contribute to the question of the uncertain taxonomic status of these moths.

The two moths shared many features of their life cycle, such as the numbers of ova laid and the duration to their hatching, the anatomical structure and behaviour of their larvae, pre-pupation behaviour, total duration of their life cycles, and the duration of life cycle stages. Furthermore, the number of larval instars was the same in both cases. These observations suggest that *L. ferchaultella* is a parthenogenetically reproducing form of *L. lapidella*.

However, differences between the two moths were noted. These included the size of ova, larvae, pupae and ovigerous females, the larval diets and sites chosen for pupation; and the mobility, “calling” behaviour and external anatomical structure of female moths. These observations support the argument that *L. ferchaultella* is a separate species from *L. lapidella*.

**TAXONOMIC STATUS**

Hättenschwiler (1985) states that it is unclear what status should be afforded *L. ferchaultella*; whether it should be regarded as a species distinct from *L. lapidella* or as a form of that species. The moth representing *L. ferchaultella* reproduces parthenogenetically, producing only apterous female imagos. *L. lapidella* reproduces sexually, producing both winged males and apterous females. McDonogh (1939) proposed that the British distribution of *L. ferchaultella* is dictated by altitude and climatic factors, but Narbel-Hofstetter (1964) showed that the European distributions of these moths overlap in several areas (Fig. 1). Meyrick (1928) believed that populations of the sexually reproducing *lapidella* occasionally produced parthenogenetic populations of *ferchaultella* which die out over time. Seiler (1929) studied parthenogenetic and bisexual reproducing psychid moth material described as *Solenobia triquetrella* (Hübner). This material is now recognised as the parthenogenetic *Dahlia triquetrella* (Hübner) and the bisexual *D. inconspicuella* (Stainton), moths whose taxonomic status was equally as uncertain as that under consideration here. Seiler suggested that the bisexual moth (*inconspicuella*) is being replaced by the parthenogenetic moth (*tripetrella*). Tutt (1899) believed that *L. ferchaultella* and *L. lapidella* are distinct species, the view held by McDonogh (1941) who summarised these various positions thus:

**Meyrick Type:**
1) There must be continuous structural variation from the bisexual form to the most extreme parthenogenetic form.
2) There may be differences in the geographic distributions of the two forms.
3) Parthenogenetic females are likely to breed with males of the parent stock.
Fig. 1. The European distribution of _Luffia ferchaultella_ and _L. lapidella_ (adapted from Narbel-Hofstetter, 1964).

**Seiler Type:**
1) There should be no differences in structure between the two forms.
2) The geographic distributions will probably be identical.
3) Parthenogenetic females are likely to breed with males of the parent stock.

**Tutt Type:**
1) Structural variation between the two forms will almost certainly be discontinuous.
2) The geographic distributions will probably be different.
3) Parthenogenetic females may not be able to mate with males of the other form.

Henderickx (1987) describes finding pupal exuviae and winged male adults on the trunks of two oak trees near Mol, Belgium, in 1980 and 1986, among a parthenogenetic population of _L. ferchaultella_. He compared their genitalia with those of male _L. lapidella_ from Switzerland and Spain and found minor differences in the degree of chitination. However, he was unable to decide if the specimens from Mol represented _L. lapidella_ or male examples of _ferchaultella_.

 sağlamutara. Luffia ferchaultella Luffia lapidella

سالارا. Luffia ferchaultella Luffia lapidella

Fig. 1. The European distribution of _Luffia ferchaultella_ and _L. lapidella_ (adapted from Narbel-Hofstetter, 1964).

**Seiler Type:**
1) There should be no differences in structure between the two forms.
2) The geographic distributions will probably be identical.
3) Parthenogenetic females are likely to breed with males of the parent stock.

**Tutt Type:**
1) Structural variation between the two forms will almost certainly be discontinuous.
2) The geographic distributions will probably be different.
3) Parthenogenetic females may not be able to mate with males of the other form.

Henderickx (1987) describes finding pupal exuviae and winged male adults on the trunks of two oak trees near Mol, Belgium, in 1980 and 1986, among a parthenogenetic population of _L. ferchaultella_. He compared their genitalia with those of male _L. lapidella_ from Switzerland and Spain and found minor differences in the degree of chitination. However, he was unable to decide if the specimens from Mol represented _L. lapidella_ or male examples of _ferchaultella_.
REARING

Larvae of *L. ferchaultella* were collected from the trunks of deciduous trees, mostly oak and sycamore, in Oaken Grove near Henley-on-Thames, Buckinghamshire (SU769855) on 17.vii.1995. Larvae of *L. lapidella* were collected from lichens on rocks near Marazion, Cornwall (the UK locality where they were first discovered by Smith, 1983), on 21.ix.1995. Larvae of both moths were segregated and reared in transparent Perspex boxes under controlled conditions of temperature (mean 20.8, range 20.6 to 21.0°C) and photoperiod (14 hours light, 10 hours dark, no dawn/dusk period) using a Gallenkamp illuminated incubator.

ADULT EMERGENCE

*Luffia ferchaultella* and *L. lapidella* are stated to emerge from their pupae in the early morning in nature (Hättenschwiler, loc. cit.). With both *L. ferchaultella* and *lapidella*, all emergences (a total of over 100 *ferchaultella*, all females, and around 40 *lapidella*, evenly split between males and females) occurred within the first hour or two of the light cycle. Immediately following emergence, the *ferchaultella* females commenced oviposition in the old pupal exuviae within their larval cases. However, with female *lapidella*, pairing was found to be an essential prerequisite to oviposition. Prior to mating, virgin *lapidella* females were observed to “call” for a mate in the manner described by McDonogh (1941). On introduction of a male to a female, pairing occurred almost instantly and lasted from 30 seconds to one minute. Pairing one male with several females was not attempted. Spontaneous pairings were avoided as pupae were isolated prior to emergence and it was found that no eggs, fertile or otherwise, were laid by virgin females of *lapidella*. This calling behaviour was never seen with *ferchaultella*. Pairings between female *ferchaultella* and male *lapidella* were attempted on two occasions, without success. The female moths did not adopt calling postures and the males showed no interest in them. This observation supports the “Tutt Type” proposed by McDonogh (1941).

Newly emerged *lapidella* females were three or four times larger than fresh *ferchaultella* females. These comparisons were made immediately after eclosion, as once oviposition commenced the adults shrank rapidly as the ova left their abdomens. Females of both *lapidella* and *ferchaultella* did not voluntarily leave the surface of their larval cases after eclosion, and if physically removed to even a short distance were unable to return to them. However, *lapidella* females were more active than those of *ferchaultella*, spontaneously moving around on their cases while calling for a mate.

After oviposition, females of both “species” survived for two or three days, eventually shrivelling and remaining attached to their cases or falling from them. Male *lapidella* survived for a similar period.

The published descriptions of the external anatomy of female *lapidella* and *ferchaultella* differ in that female examples of *lapidella* have seven to nine antennal segments and three to four tarsal segments, while female *ferchaultella* have six to eight antennal segments and one to three tarsal segments (Hättenschwiler, loc. cit.). This was the case for females reared during this project, another point in favour of the “Tutt Type”. However, McDonogh (1943) states that the adult morphology of *L. ferchaultella*, in terms of antennal and tarsal segment number, was influenced by the laboratory conditions under which he held larvae. By rearing larvae of both “species” under controlled environmental conditions, any environmentally induced morphological differences should be eliminated.
McDonogh (1941) illustrated the genitalia of female L. lapidella and L. ferchaultella and found no obvious differences. These structures were compared using material reared during this work, with the same outcome, except that lapidella material was somewhat larger than ferchaultella.

OVIPOSITION

With both “species”, oviposition was completed within 24 hours and usually by the end of the light cycle. On average, between 30 and 40 ova were produced by females of each “species”; in each case the ovum had a soft chorion without obvious sculpturing and was of an opaque grey/yellow colour when first laid. The only

Figs 2–5. Early stages of Luffia spp. 2. Pupa showing position of ova and hair scales. 3. First instar and fully grown larva (fifth instar) showing banding on case due to different coloured lichens/algae. 4. Pre-pupation larval case with valves cut for eclosion of adult. 5. Larval case shrunken by contraction of reinforcing silk, to form a pupation chamber.
difference appeared to be one of size, *lapidella* ova being noticeably larger than those of *ferchaultella*.

For both “species”, the ova were packed into the rear three-quarters of the pupal exuviae, the anterior portion of the exuvia being filled with hair scales from the female moths’ anal tuft (Fig. 2). Batches of *ferchaultella* ova collected from the wild have been observed to be predated by thrips and mites, so the presence of these hair scales may afford the ova some protection by hindering the access of such predators.

With both “species”, four or five days before eclosion of the larvae, their darkening head capsules became visible through the chorion and subsequently through the wall of the pupal exuviae. Hatching of the ova at this temperature (20°C) occurred at around 30 days for both “species”, the young larvae immediately building silk-lined cases coated with lichen and algae.

**Larvae**

The larvae of both “species” passed through five instars, separated on the basis of the widths of their head capsules, and were full grown by about 60 days (20°C). No diapause occurred, although with *ferchaultella* the third instar lasted approximately twice as long as any of the others. With larvae of *lapidella*, the third instar, although less protracted than that of *ferchaultella*, also lasted longer than any of the other four. This indicates that the third instar may be the stage at which overwintering occurs in the natural state.

The larvae of both moths enlarged their cases as they grew, preserving a record of the material they had been feeding on in the form of differently coloured bands of algae and lichen laid down on the exterior of their cases (Fig. 3). Larvae of both moths accepted algae (Diplococcus sp.) and lichen (Lecanora conizaeoides) growing on wood, and encrusting lichen (Parmelia glabratula) growing on rocks. However, rearing *lapidella* larvae was successful only if lichens from rocks were offered, while larvae of *ferchaultella* preferred lichens and algae growing on wood. First instar larvae of *lapidella* offered lichen and algae on wood failed to produce adults, most dying in their third instar. First instar larvae of *ferchaultella* offered rock lichen also died before reaching maturity. Both were successfully reared on their preferred diets, lichen and algae on wood for *ferchaultella*, and lichen on rocks for *lapidella*.

Larvae of both “species” were identical in colour and darkened noticeably on entering their third instar. Prior to this they were creamy white and opaque with a plain darkened prothoracic plate. On assuming their third instar the chitinised plate on the prothoracic segment acquired a pale grey triangular marking in the dorsal position. This marking and the plate were of similar colour and shape for both “species”, and persisted to the end of the final instar. The structure of the larval head capsules and true walking legs was compared microscopically. There were no obvious differences in chaetotaxy or in the shape of the mandibles, antennae or other chitinised parts of comparable instars. The pale ocelli present on the sides of the head capsules were also identical. However, a major point of difference was that the cases of final instar *lapidella* larvae were approximately twice the size of those of full-grown *ferchaultella* larvae, and the larvae themselves were similarly larger.

The importance of moisture to the successful rearing of both “species” was realised at an early stage. Larval growth was maximised if the substrate was sprayed with a fine mist of distilled water twice a week. On spraying, the larvae became very active and were observed to search for droplets of water which they drank once located. Drinking proceeded as a series of ingestions rather than a steady intake.
characterised by a pulsed decrease in droplet size. Larvae imbibed several small droplets or part of a larger one, the amount ingested increasing as the larvae grew.

The literature suggests that larvae of both "species" may be found feeding on lichens and algae growing on rocks and wood in nature. As far as can be ascertained this is not the case: all adults resulting from larvae collected from lichen on sunny exposed rocks in Cornwall corresponded to *lapidella*, while larvae collected from shaded damper tree trunks in Buckinghamshire produced adults typical of *ferchaultella*. This distribution supports McDonoghs “Tutt Type”. However, in culture the larvae of both moths behaved similarly, feeding exposed on their substrates but tending to shelter out of direct illumination when not feeding, indicating no preference for habitat type. *Luffia lapidella* is stated to prefer dry sunny habitats while *ferchaultella* favours shady situations with high humidity (Hättenschwiler, *loc. cit.*). This was the case with the pupation sites chosen by cultured larvae.

**Pre-pupation behaviour**

Prior to pupation the larvae of both “species” loosely affixed their cases to the substrate before turning round within the case and using their mandibles to cut three or four evenly spaced longitudinal slits in its anal end (Fig. 4). This procedure commenced at the rear opening and the cut proceeded towards the fixed “head end” of the case. These cuts were around one fifth to one sixth of the length of the case and formed “valves” to facilitate the subsequent emergence of the imago. The larvae then reverted to their original head-down position, detached their cases from the substrate and wandered until they found suitable sites for pupation. Here their behaviour differed significantly. With *ferchaultella*, such sites were usually within a crevice or crack in the surface of tree bark and shaded from direct illumination. Larvae of *lapidella* affixed their cases prior to pupation in exposed situations in full illumination. Once the pupation site had been selected, the larvae of both “species” affixed their cases firmly to the substrate with white silk. They then inverted their position so that they were again facing the recently prepared exit at the free end of the case. The cases were then reinforced by an additional lining of white silk, forming a pupation chamber. Pupation occurred within these chambers, the additional silk lining having shrunk such that the cases became bottle-shaped (Fig. 5).

**Pupae**

The pupal stage was of similar duration for both “species”, eclosion of the adults occurring after about 20 days at this temperature. There appeared to be no visible differences in the structure of female pupae between the two “species”, (but see Figs 28 and 29 in McDonoghs, 1941). However, only pupal exuviae were examined, making comparison of the headplates and leg sheaths difficult as these were distorted or lost on eclosion of the adults.

**Duration of the life cycles**

In nature both *ferchaultella* and *lapidella* are univoltine, but under these environmental conditions their life cycles were reduced to four months, ova to ova (Fig. 6). In both cases the stages in the life cycles were of similar duration.
Fig. 6. Duration of life cycles for both moths under controlled environmental conditions.

DISTRIBUTION

As far as is known, in the UK *L. lapidella* is restricted to the area around Marazion in Cornwall (Smith, *loc. cit.*) and to the Channel Isles, where it occurs together with *L. ferchaultella* (McDonogh, 1941). The ability of *lapidella* to survive the rigours of winter away from the mild maritime climates of the Cornish coast and the Channel Isles was investigated by placing ten newly hatched (hence parasite free), first instar *lapidella* larvae on an isolated lichen-encrusted rock in Buckinghamshire in June 1995. Four of these survived the winter of 1995/96. an unusually long and cold one compared with those experienced previously in this area. These survivors were removed in April 1996 and subsequently reared under the controlled environmental conditions already described. From these, one male and one female duly emerged, both typical examples of *lapidella*. This 20% survival shows that climate may not be the controlling factor in the distribution of *lapidella*. This is supported by a male example, probably of *lapidella*, reared from a case found near Saffron Walden, Essex (Emmet, 1998).

PARASITISM

Many parasitic Hymenoptera were reared from larvae of both “species” collected from the wild. These have been examined by Dr M. R. Shaw at the National Museums of Scotland, Edinburgh. One species, *Lissonola luffiator* Aubert, appears to have an interesting biology. This solitary endoparasitic ichneumon was obtained only from larvae of *ferchaultella*, though this does not necessarily mean that *lapidella* larvae are immune from its attack. All of the 20 or so imagos of this parasite that emerged were females. Furthermore, an infected host larva appears to have its life cycle altered by the presence of the parasite in one of two ways. Either the growth of an affected larva is greatly accelerated when compared with that of its healthy peers, or pupation of the host in summer is prevented by the parasite, the host larva entering a second winter. Either of these strategies would account for the presence of abnormally large *ferchaultella* larvae overwintering on trees at the same time as smaller second or third instar larvae. If collected during November or December and kept indoors, these large, active and apparently healthy larvae, bearing a remarkable resemblance to larvae of *lapidella* due to their size, invariably produce females of this parasitic wasp. Many of these large overwintering larvae were collected in the hope of obtaining *lapidella* from areas outside its known UK distribution, but all produced parasitic wasps of this species.
DISCUSSION

This project has demonstrated that the “species” we know as *L. lapidella* can survive in areas of the UK outside its Cornish range, while the record of a male from Essex indicates that *L. lapidella* may either be extending its range in the UK or that it is present at a low density over a wider area than is currently known.

The observations made during the rearing of these moths may be summarised thus:

- No differences were observed between *lapidella* and *ferchaultella* as regards oviposition. The number of ova laid, their positioning within the pupal exuvia, surface structure, colour and period to hatching were the same for both “species”.
- Anatomically, larvae of *lapidella* and *ferchaultella* appeared identical. Their chitinised structures and chaetotaxy were similar. Furthermore, they behaved similarly in the culture vessels and had the same number of instars, with the third instar being the point at which their colour darkened. This instar was protracted in both cases.
- The procedures for preparation of their cases prior to pupation were the same.
- Female pupal exuviae of both “species” appeared to have similar anatomical structures and eclosion of the adults occurred at the same point in the flight cycle.
- The total duration of their artificially shortened life cycles was similar under these controlled conditions, as was the duration of the individual life cycle stages.

These observations suggest that *L. ferchaultella* is a form of *L. lapidella*.

Apart from the obvious difference in their modes of reproduction, the main differences between these “species” were the larger size of *lapidella* ova, larvae and pupae, their preferred larval diets, the different pupation sites chosen, the larger size of *lapidella* females, their greater mobility and calling behaviour, and differences in the external anatomy of female imagos. It is also possible that these “species” are host to different assemblages of parasites, but this may be due to the geographic ranges of the parasites and needs further investigation before any definitive statement can be made. These observations suggest that *L. ferchaultella* and *L. lapidella* are distinct species.

It is clear that the taxonomic status of these moths cannot be determined on the basis of these observations alone. Taken as a whole, the weight of evidence tends to support McDonogh’s “Tutt Type”, i.e. that *lapidella* and *ferchaultella* are distinct species. However, this question will probably only be resolved by the application of biochemical techniques as outlined by Cook (1996), for example gel electrophoresis and/or chromosomal studies.

Populations of these moths were not adversely affected by the removal of larvae for this work, as twice the number of larvae removed were returned (parasite and disease free as they had been reared under laboratory conditions) to their original localities during the winter of 1996. Great care was taken to avoid mixing the stocks prior to their release.

REFERENCES


---

SHORT COMMUNICATION

Crossocerus vagabundus (Panzer) (Hymenoptera: Sphecidae) in Wales—This is the rarest of our four black and yellow Crossocerus species, holding RDBI status. In the past this species was widespread, if local, in the south of England and had been recorded from 25 vice-counties (Falk, 1991). It has not been reported as occurring in Wales. In 1953 it was recorded from Parley Heath, Dorset and was not recorded again until recently, when the species was found at a number of sites in Hampshire. The species is associated with damp lushly vegetated areas where it preys upon craneflies. Nesting occurs in dead wood, often in the galleries of beetle larvae (Falk, 1991). On the 7.viii.1998, while collecting in birch scrub along the margins of Crymlyn Bog (SS687943), Glamorgan, specimens of Crossocerus dimidiatus (Fab.) and C. quadriracmaculatus (Fab.) were collected. Whilst determining the specimens taken, a single male C. vagabundus (Panzer) was found amongst the C. quadriracmaculatus. Superficially to the naked eye it looked very like C. quadriracmaculatus and certainly was not noticed to be anything other than that species in the field.—P. M. PAVETT, Department of Biodiversity and Systematic Biology, National Museum and Galleries of Wales, Cathays Park. Cardiff CF1 3NP.

REFERENCE

ANNUAL UK DIPTERISTS MEETING, 14-15 NOVEMBER 1998, NATIONAL MUSEUMS AND GALLERIES OF WALES, CARDIF

DAVID CLEMENTS

The 1998 meeting of UK Dipterists Forum, an organisation affiliated to the BENHS, was marked by two departures from those of previous years. For the first time since its inception in the early 1970s the meeting was held somewhere other than the Natural History Museum in London and, secondly, the meeting was spread over a whole weekend, rather than being a one-day event as in the past. The 1998 meeting was hosted by the entomology section of the National Museums and Galleries of Wales (NMGW) in Cardiff, and comprised a day of presentations, exhibitions and Forum business on the Saturday, followed by a series of workshops, informal meetings and access to the museum collections on the Sunday.

About 80 Forum members attended on the Saturday, which was held in the museum’s recently-refurbished and well-equipped committee rooms. The morning commenced with a brief introduction and welcome to the museum by Dr Mike Wilson, Head of Entomology, who congratulated all those involved in the production of a new and state-of-the-art British Diptera checklist (Chandler 1998 (Ed.) Handbk. Identi. Br. Insects (NS) 12(1)), stocks of which were brought directly, if not actually hot, from the presses to the meeting by the editor that morning. Dr Liz Howe then took over proceedings as chairwoman for the morning session. These commenced with an overview by Dr Roger Morris of English Nature on the hoverflies of Surrey, in which he described the findings of a 15-year project to map the Surrey syrphid fauna. He went on to describe how the Surrey Wildlife Trust had managed to fund the publication of a series of fairly lavish county invertebrate atlases, by commencing firstly with the popular groups (i.e. butterflies, moths and dragonflies) for which outside sponsorship could be found comparatively easily, then using the profits from sales of these to fund the subsequent production of publications on the less-popular groups, the latest being the Hoverflies of Surrey (Morris 1998).

This was followed by a talk by Dr Mike Howe of the Countryside Council for Wales (CCW), who gave an introductory overview of Diptera in Wales describing the distributions and habits of a number of species which are of particular conservation concern. These included some that are in the UK Biodiversity Action Plan (UK BAP), such as Asilus crabroformis L. (Asilidae), Odontomyia hydroleon (L.) (Stratiomyidae), Lipsothrix nervosa Edwards (Limoniiidae), Chlorismia rustica (Panzer) and Spiriverpa lunulata (Zett.) (Therioidea), and some which have the bulk of their UK distribution in Wales, such as Stratiomyia chamaeleon (L.) (Stratiomyi-

dae), Acrometopia wahlbergi (Zett.) (Chamaemyiidae), Cosmetopus dentimanus (Zett.) (Scathophagidae) and Neoitannis cothurnatus (Meigen) (Asilidae). He also gave a brief review of recent CCW-commissioned survey work relevant to Diptera, such as the Welsh Peatland Invertebrate Survey (originally undertaken in the 1980s under the direction of the then Nature Conservancy Council), the Welsh Parkland Survey (undertaken in conjunction with NMGW and Liverpool Museum), a survey of exposed riverine sediments (in conjunction with the Environment Agency and English Nature) and an on-going study to determine the coastal soft-cliff resource in Wales, an important habitat for many specialist Diptera.

A joint presentation was then given by Drs Geoff Hancock and Graham Rotheray of the Royal Museums in Scotland, describing the results of a recent expedition to study the dipterous fauna of water-holding bromeliads in Trinidad. The audience
Dr Lloyd Knutson (centre) and his wife, Mara, with John Deeming.

was treated to a mouth-watering slide show of exotic and spectacular species, especially of hoverflies, many of which were previously little-known or undescribed. The appearance of odd venomous spiders and snakes during the expedition evidently added further spice to proceedings.

The last presentation of the day was given by David Clements, who described an on-going project funded by the Countryside Council for Wales and English Nature to investigate the biology and breeding requirements of the hornet robberfly, *Asilus crabroniformis* L. This formerly widespread species has suffered a widespread and rapid decline over the whole of its European range, and is consequently a UK BAP ‘Short List’ species. Together with co-workers Drs Peter Skidmore and Jonty Denton, much work has been done in describing the early stages and oviposition behaviour, including close-up video recording of egg-laying, some of which was
The 1998 cake. prepared by Diane Henshaw.

shown. However, searches for mature larvae in the field, which are believed to be associated with geotrupine beetle larvae, have so far met with failure. The project will continue in 1999.

Saturday afternoon commenced with the AGM of the Forum and a discussion of the future for the various Diptera recording schemes, followed by informal discussions and examination of the many exhibits, full details of which will be published in a forthcoming issue of the Forum's 'house-magazine', Dipterists Digest. After much consideration, a prize for best exhibit was awarded by the Forum committee to Dr Malcolm Smart for his display of British and foreign Asilidae. The prize of a book was very kindly donated by Ian Johnson of Pemberley Books, who also attended the meeting with a large stand of new and second-hand Diptera literature for sale throughout the weekend.

Saturday's proceedings were rounded-off by the traditional Dipterists' Supper, which was held in the adjacent main building of the University of Wales. This excellent event was attended by over 60 Forum members, and graced as in previous years by a superbly-decorated cake prepared by Mrs Diane Henshaw. This year the cake honoured the work of Dr Lloyd Knutson, the distinguished Sciomyzidae specialist now happily retired to France after a long entomological career in various countries and dispositions. The Forum was delighted that Dr Knutson and his wife Mara were able to attend the event, and he was duly invited to cut the cake after first identifying its crowning decoration, a portrait of the sciomyzid \textit{Pherbellia knutsoni} Verbeke, originally described from Wales.

On the Sunday, about 40 Forum members returned to the museum to attend workshops on the identification of British and European \textit{Cheilosia} (Syrphidae), given by Steven Falk; the identification of British picture-winged flies (Ulidiidae and
Platystomatidae), given by David Clements, and on the preparation and examination of Diptera genitalia, given by Dr John Deeming. Dr Stuart Ball also gave a demonstration of the new ‘Recorder’ software package, and various computer developments including ‘Syrph the Net’, a hoverfly web-site run by Dr Martín Speight. The remainder of the day was taken up with informal discussion and identification of specimens, with many members making use of the large British and foreign Diptera collections held by the museum.

Altogether it was a very successful and well-attended event, made the more so by the excellent facilities provided by the museum and the university. Grateful thanks are extended to Mike Wilson, John Deeming and the staff of the museum, Dr Mark Jervis and the catering service at the University of Wales, Diane Henshaw, Ian and Julie Johnson and all of the presentation and workshop contributors. The event was organised by David Clements, and Anne Clements and Mark Pavett very kindly helped out on the day.

_________________________________________________________

SHORT COMMUNICATION

Rearing *Dahlia triquetrella* (Hübner) (Lepidoptera: Psychidae).—On 18.iii.1997 Dennis O’Keeffe sent me some pupae of the local psychid *Dahlia triquetrella* from a site near Orpington in Kent. This moth has a very localised distribution in the British Isles, being known only from West Kent (VC 16) (where these pupae came from) and Westmorland and North Lancashire (VC 69) (*MBGBI* 2: 135). In the UK it reproduces parthenogenetically, only apterous females being known, although winged males occur in continental Europe. The larvae construct portable cases which they enlarge as they grow, camouflaging the exterior with sand, frass, dead insects and plant debris. Pupation occurs in the larval case and the female moths lay their ova in the old case beneath their pupal exuviae.

A total of 8 adult moths hatched between the 1 and 10.iv.1997, always very early in the morning. They immediately proceeded to lay ova in their old larval cases. Indeed it proved hard to prevent oviposition due to the early hour of their eclosion. I retained the ova but did not expect to be able to rear any resultant larvae past their first instar.

A total of 212 larvae (average approximately 26 per adult) hatched between 24 and 30.iv.1997. In an attempt to rear these I prepared two Perspex larval boxes with a 2 cm layer of finely sieved John Innes No. 3 potting compost and pieces of dead bark with a growth of the lichen *Lecanora conizaeoides* and terrestrial epiphytic algae of the genus *Diplococcus*. The larvae were placed on the bark but soon wandered off onto the sieved compost. Here they constructed miniature elongate silken cases, roughly triangular in cross section and coated externally with dusty soil particles.

Evidence of their feeding on the lichen and algae, in the form of faecal pellets, was hard to find. However, some green-coloured frass was eventually located but it soon became apparent that the larvae had little or no interest in the algae as a pabulum. Consequently I added some dead dried micromoths to their boxes and almost immediately the larvae began feeding on these. Before long, each piece of moth thorax and abdomen was ringed with larval cases. The minute larvae were evident protruding from these and struggling to attain a position from which to feed. To prevent desiccation I sprayed the larvae about every 10 to 15 days with a fine mist of water, but feeding them on freshly killed insects reduced the need for this and the subsequent risk of mould developing in the damp atmosphere.
I kept the larvae indoors all year in an unheated room with a natural photoperiod. However, the temperature of this room was considerably higher than environmental temperatures for at least seven or eight months of the year (October to May). They fed up slowly, enlarging their cases and decorating these with sand, peat, frass and parts of dead insects (mostly legs and elytra). The larvae showed a marked preference for Lepidoptera, Hemiptera (especially smelly shield bugs) and most Coleoptera with the exception of red and black ladybirds (7 spot) which they actively avoided. Diptera, in the form of crane flies, were also eaten, but not avidly.

The sieved peat was renewed in July 1997 as there was evidence of infestation by mites. New pieces of bark were included to provide a solid substrate for the larvae to crawl on. This procedure was repeated in December for the same reason.

Second instar larvae were seen on 26.v. third instars on 19.vii. and fourth instars on 5.viii. Final instar (fifth) larvae were evident on 26.viii.1997. These stages were separated on the basis of their head capsule sizes. Late in October the larvae began to climb the walls of their boxes and attach their cases loosely to the angles of the lids and to the walls. Others were found loosely attached and hanging from the undersides of pieces of bark. Once attached in this way they remained without feeding, despite fresh food being added periodically over the winter. In January the larvae began to perambulate and on the 12th of that month I opened five cases and found that all still contained larvae. By late February 1998 most larvae had attached their cases firmly with white silk to the wood and box lids and on opening one case I found it contained a pupa.

In an attempt to stimulate pupation and eclosion of the adults, about this time I left the boxes exposed to bright sunlight indoors. This was a mistake as many mortalities occurred due to over-heating. Despite this, adults began to emerge on 20.i1 and by 23.iii. 1998 a total of ten females had emerged.

Due to the females’ urge to oviposit immediately post eclosion, and assuming an average brood size of 25 ova per female. I estimated that these ten adults would produce around 250 ova. Larvae began to hatch on 4.iv., and by 20.iv. a total of around 200 had emerged. It is interesting to note that the timing of the life cycle stages of this species were unaffected by the larvae being kept in captivity. Adults emerged from reared pupae at the same time of year as those from wild pupae. Oviposition and larval eclosion were similarly timed too, despite the temperature of the room the larvae were reared in being higher than environmental temperatures for most of the year. This indicates that the duration of these various stages in this species is probably influenced more strongly by photoperiod than by temperature.

I attempted to feed the F1 larvae on dead insects as before but this time was unsuccessful. I found that all the larvae had died in their first instar, two or three days after I had fed them with two freshly killed adult green shield bugs Palomena prasina (L) from my garden. I can only presume that the bugs contained some toxin that killed the larvae, as a killing agent had not been used. Fortunately I did not attempt to feed the F1 larvae on this species of bug.— I. SIMS, 2 The Delph, Lower Earley, Reading, Berkshire RG6 3AN.
Call for Assistance with a New Survey of the Social Wasps of Britain and Ireland for 1999/2000

It has been 20 years since the last survey of social wasps was carried out by the Bees, Wasps and Ants Recording Scheme (BWARS) in conjunction with the Biological Records Centre at Monks Wood. Since then BWARS has become a formally constituted Society, i.e. the Bees, Wasps and Ants Recording Society (still referred to as BWARS) engaging in many important recording activities. Currently the society is working on a set of Provisional Atlases of all British aculeates, including the social wasps. Therefore, it is important to obtain updated information on the current status and distributions of British social wasps so they can be included in the new atlases. Some key reasons for this are that since the last survey, which recorded seven species, there have been 2 new additions to the list:

Original list

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hornet</strong></td>
<td>Vespa crabro L.</td>
</tr>
<tr>
<td><strong>Common wasp</strong></td>
<td>Vespula vulgaris (L.)</td>
</tr>
<tr>
<td><strong>German wasp</strong></td>
<td>V. germanica (Fab.)</td>
</tr>
<tr>
<td><strong>Red wasp</strong></td>
<td>V. rufa (L.)</td>
</tr>
<tr>
<td><strong>Cuckoo wasp</strong></td>
<td>V. austriaca (Panzer)</td>
</tr>
<tr>
<td><strong>Tree wasp</strong></td>
<td>Dolichovespula sylvestris (Scop.)</td>
</tr>
<tr>
<td><strong>Norwegian wasp</strong></td>
<td>D. norwegica (Fab.)</td>
</tr>
</tbody>
</table>

The 2 new additions

- **Median wasp** D. media (Retzius)
- **Saxon wasp** D. saxonica (Fab.)

It is possible that by now their brood parasites (D. omissa Bischoff, and D. adulterina du Buysson respectively) may have followed. In addition, some people are suggesting that the common wasp may be declining and that the Norwegian wasp is retreating northwards. Therefore, an extensive re-survey of Britain and Ireland is urgently needed to answer the following questions:

- Have any new species (D. omissa and D. adulterina) colonized?
- What is the current position of the median and Saxon wasps?
- Have either the median or Saxon wasps reached Ireland or Scotland?
- Is the common wasp actually declining? Is the Norwegian wasp retreating northwards?

**HOW CAN YOU HELP?**

If you find any dead wasps or kill one for any reason during the spring/summer of 1999 and 2000, could you please note when and where (as precisely as possible) it was found (see below) and then send the DEAD wasp (e.g. in a matchbox etc.), along with the other details, clearly marked WASP SURVEY to the appropriate co-ordinator. Alternatively, if you are 100% certain you can precisely identify social wasps, then send the record, however, if in any doubt whatsoever please send the dead wasp. To allow for easy processing of records please use the format outlined below. Please don’t worry about the condition of the wasps—it should be possible to identify them even if they have been swatted, as long as all parts are kept together.
For an information pack on the present 9 species please send an A5 SAE (26p) enclosing two unused 1st class stamps (to cover printing costs) to Tom Ings (address below).

Please note that because of the large volume of specimens we expect to receive we will only be able to reply with information about the wasps and return specimens for those interested if a specific request is made and the appropriate postage and suitable packaging is included.

Format for records

DATE: DD/MM/YYY (e.g. 22/4/1998)
LOCALITY: Nearest town (please include street name/postcode) or village (e.g. Redlynch)
GRID REFERENCE: If possible give an Ordnance Survey 6 figure reference, (e.g. SU204205)
SPECIES NAME: Where relevant (NB only IF you can ACCURATELY identify (100% certainty) the wasp, but if you are in ANY doubt send the specimen)
NAME OF COLLECTOR: Who caught/found the wasp
NAME OF IDENTIFIER: Where relevant (e.g. Tom Ings)
OTHER INFORMATION: Other useful information (e.g. whether male/worker/queen (only needed if not supplying specimen), was it from a nest?, was it visiting flowers, catching prey? etc.)

Regional co-ordinators

BRITAIN (England, Scotland and Wales):

Tom Ings, Department of Biological Sciences, Science Laboratories, South Road, DURHAM, DH1 3LE
E-mail: [t.c.ings@durham.ac.uk]

NORTHERN IRELAND:

Brian Nelson, Ulster Museum, Botanic Gardens, BELFAST, BT9 5AB
E-mail: [brian.nelson.um@nics.gov.uk]

REPUBLIC OF IRELAND:

Colm Ronayne, 33 Dublin Road, SKERRIES, Co. Dublin, Ireland
E-mail: [colmronayne@tinet.ie]

This information can also be found on the internet at: Http://www.durham.ac.uk/~dbl3tci/waspsurv.html
SHORT COMMUNICATION

Pleurophorus caeus (Creutzer) (Col.: Scarabaeidae: Psammobiini) imported into Cambridgeshire.—On 10 March 1997, I found an elongate blackish-brown beetle, 3 mm long and about 1 mm wide, adhering to a stick of celery in my kitchen in Huntingdon, Cambridgeshire (VC31, Hunts.). To the naked eye, it resembled a scolytid or anobid, and as my house is infected with a low density of Pilinus pectinicornis, it might have been passed over as a female of that species. Closer inspection revealed that it was an unusually elongate scarabaeid, and it keyed readily in Jessop (1986) and Britton (1956) to Pleurophorus caeus (Creutzer). It appears even more elongate and parallel-sided than the illustrations in Harde (1981) or Jessop (1986) suggest; it is well portrayed in Reitter (1909). I am grateful to Darren Mann for confirming the identification.

P. caeus was recorded rarely but widely in Britain last century (Fowler, 1890). Jessop mentions records for Scilly, Cornwall, Bristol and Southport (Merseyside), to which Hyman (1992) adds Glamorgan. The Red Data Book (Shirt, 1987) lists it as a species not recorded since 1900, and the latest record of which I am aware is from the Isles of Scilly in 1890 (Hyman, 1992). The species is apparently common around the Mediterranean and the Black Sea (D. J. Mann, pers. comm.). Like most psammobines, it feeds on decaying vegetation as well as on dry cow dung, and is probably associated with dry, sandy soils.

The celery in question was recently purchased from the local Tesco superstore. It had been imported from Torre Epachepeo, Murcia, Spain, transported by refrigerated lorry. Examination of the remainder of the store’s Spanish celery stocks on the evening of 10 March failed to produce any further specimens, and subsequent batches of celery were of Israeli origin, and devoid of Coleoptera.

As a casual importation, this record is probably of little consequence except to show that rare or, indeed, extinct native species are occasionally transported by commerce. This process is familiar among larger insects: for example, most recent records of the mole-cricket Gryllotalpa gryllotalpa L. are thought to be accidental imports (Marshall & Haes, 1988); but it is seldom reported for more cryptic species. The other purpose of this note is to remark that P. caeus looks superficially sufficiently unlike a dung-beetle to be passed over in the field—or the kitchen.—

BRIAN C. EVERSHAM, Wildlife Trust for Beds, Cambs & Northants, Lings House, Billing Lings, Northampton NN3 8BE.

REFERENCES

BENHS INDOOR MEETINGS

7 April 1998

Mr A. J. HALSTEAD showed a mass of silk tubes spun as a hibernaculum by larvae of the bee moth, Aphonmia sociella (L.) (Lep: Pyralidae). The caterpillars feed during the summer in the nests of social wasps or bumblebees. The specimens were found in a shed at Speen, near Newbury, Berks., with the remains of a bumblebee nest nearby.

Mr R. D. HAWKINS showed three insects that he had collected as road casualties at Horley, Surrey. These were queen bumblebees, Bombus terrestris (L.) and B. pascuorum (Scop.), and a mining bee, Andrena scotica Perkins. He noted that car kills were likely to have a greater effect on insect populations than the activities of insect collectors. This may be particularly true in areas of intense agriculture where the roadside verges may be the main source of flowers for foraging bees.

Dr J. MUGGLETON recorded either a very late or a very early emergence of a fresh brick red form of the lime hawk moth, Mimas tiliae L., at a light trap in his garden in Staines, Middx., on 17.xi.97.

Mr I. D. FERGUSON reported he had taken a male green form of this moth at a light on 30.iii.98 in his garden at Orpington, Kent.

Dr M. HARPER spoke on the management of woods for Lepidoptera. When he moved from London to Ledbury, Glos. he became interested in Haugh Wood which is an outlying part of the Forest of Dean. It is an SSSI that is owned by Forest Enterprise and has largely been planted with conifers. Dr Harper has been able to persuade Forest Enterprise to open up some parts of the wood and restore them to a coppice cycle with broad-leaved trees and shrubs. Eight areas of about 1 ha have now been cleared of conifers and the subsequent flora and fauna has been recorded. The floral composition varies according to the soil conditions but in some areas up to 26 species of woody plants have been recorded two years after clearance. When an area is felled the wood is stacked in wig wams to leave the ground clear for plant recolonization. These stacks provide an important habitat for fungi and insects. Tree stumps also have their associated invertebrate fauna. Coppicing increases the floral diversity and also creates sheltered open spaces within the wood where the warmer microclimate encourages insect activity.

Dr Harper showed slides of the plants, butterflies, moths and other insects that have been recorded in the coppiced areas. His talk was an excellent example of the significant habitat improvements that can be brought about through the cooperation of a knowledgeable entomologist and a sympathetic landowner.

12 May 1998

The President, Mr B. C. EVERSHAM, announced the death of the butterfly illustrator, Gordon Beningfield.

Mr A. J. HALSTEAD showed some live geometrid moths, Idaea inquinata (Scop.), found emerging in a house at Stoke D’Abernon, Surrey. The larvae had been feeding on dried flowers, including sunflowers, which had been grown in the householder’s garden the previous summer.

Dr D. J. L. AGASSIZ showed some cocoons of Argyresthia cupressella Walsingham (Lep: Yponomeutidae) and larval feeding damage on cypress shoots. Most Argyresthia spp. spin their cocoons on the ground; A. cupressella presumably
often does so but many larvae coming down from high branches construct cocoons among the foliage, usually against a stem where a shoot branches away from it. *A. cupressella* is a North American species first recorded in Britain in 1997. It is found commonly at Kessingland near the Suffolk coast and northwards towards the Norfolk border, but apparently not yet in Norfolk.

Mr R. SOFTLY showed two examples of predatory bugs *Aptus mirmicoides* (Costa) (identification by R. D. Hawkins) found in an actinic light trap a few nights previously.

Mr R. D. HAWKINS showed a specimen of the coreid bug *Gonocerus acute-angulatus* (Goeze) found on 8.v.98 on a roadside verge at Horley, Surrey. This scarce bug was restricted to the Box Hill area but seems to be spreading. Horley is a new site record and is 12 km south-east of those previously known.

Mr B. C. EVERSHAM showed a live specimen of a predatory slug, *Testacella haliotidea* Draparnaud. This infrequently seen subterranean slug was found in the garden of Mr Ian Dawson at Little Paxton, Cambs., on 12.iv.98.

The following persons have been approved by Council as members: Dr Alan Butler, Ms Debbie Evans, Mr Iain Gillespie, Mr Malcolm Lee, Mr Kevin McGee, Mr Simon Miles, Mr Steve Preddy and Mr Bull.

Mr R. W. J.UFFEN reported that he had seen the bumblebee mimic hoverfly *Pocota personata* (Harris) near some 150-year-old trees in parkland at Welwyn, Herts., that has recently declared a Local Nature Reserve.

Dr I. F. G. McLEAN outlined recent changes made to the Wildlife and Countryside Act. Details will be given in an article in the Journal.

Dr ADRIAN PONT gave a talk entitled ‘Reflections on the history of Dipterology’. The modern classification system was devised by Linnaeus in the 18th century but his studies were based on the work of earlier naturalists. Aristotle in the 4th century BC recognized flies as a distinct group in the animal kingdom and divided them into biting and non-biting types. His writings remained influential for nearly 2000 years and the study of flies did not really begin until the 17th century. This was helped by inventions such as the printing press and microscopes. Seventeenth century entomologists, such as Francesco Redi, Johannis Swammerdam, Anton Leeuwenhoek and Robert Hook made studies of life cycles, dipteran anatomy and illustrated flies. The Aristotelian theory of spontaneous generation of fly maggots was disproved. John Ray developed the concept of arranging flies into genera of species. Other early dipterists included Johan Goedart and René Réamur. Linnaeus published the first edition of his *Systema Naturae* in 1735. He gradually refined his naming system, arriving at the binomial system in the eleventh edition. Christian Fabricius adopted the Linnaean system and, like Aristotle, used mouthparts as the basis for his classification. Other workers who made contributions to the study of flies in the 18th and 19th centuries were Baron Charles De Geer, Prof. Wiedeman, Hoffimansegg, Illiger, Zetterstedt, Macquart and Meigen. The last mentioned is the founder of modern European dipterology. He began studying flies in 1790 and by 1818 had written a seven-volume work on European Diptera.

9 June 1998

Mr A. J. HALSTEAD showed a live specimen of the two-spot ladybird, *Adalia bipunctata* (L.), which had the red of both elytra darkened almost to the point of being entirely black. It is uncertain whether this is a melanic form or the result of
some injury. The ladybird was found on the flower of angelica (Angelica archangelica L.) in a garden at Knaphill, Surrey. The insignificant flowers of this umbellifer also attracted large numbers of museum beetle, Anthrenus verbasci (L.), when the plants came into flower in May.

Dr J. Muggleton noted that Dr M. Majerus has recently described a melanic form of the two-spot ladybird, f. purpurea, which was of a dark purplish black colour. This might be similar to the specimen exhibited.

Mr R. D. Hawkins showed three species of click beetles of the Anoplius genus which have red and black elytra. These were Anoplius baleatus (L.) and A. elongantulus (F.), both from Bagmoor Common, Surrey, and A. sanguinolentus (Schrank) from Cobbett Hill, Surrey, all taken in May 1998.

Dr J. Muggleton showed a small caterpillar with yellow and black markings living in a silk tunnel spun amongst the flowers of water dropwort, Oenanthe crocata L., growing on the bank of the River Thames at Staines, Middx. Mr Hawkins thought the caterpillar to be a Depressaria sp. (Lep.: Oecophoridae).

Dr J. Muggleton distributed some leaflets and survey forms published by the People’s Trust for Endangered Species in connection with their survey into the distribution and abundance of the stag beetle, Lucanus cervus (L.).

Mr A. J. Halstead spoke on “Mining the Society’s Archives” in which he showed a selection of transparencies from the Society’s extensive photographic collection. This is in the process of being reorganized to make it more accessible. The collection has been accumulated over the years as a result of legacies and donations and was housed in a variety of boxes, trays and folders. While there is some order and cataloguing of some of the Lepidoptera slides this was conspicuously absent from the other orders. Some sorting of the Lepidoptera slides remains to be done but most of the Hemiptera, Neuroptera, Odonata, Orthoptera, Coleoptera, Diptera and Hymenoptera have been sorted and transferred to transparent polypropylene hanging files. These have been arranged in taxonomic order in a four-drawer filing cabinet in the library section of the Pelham-Clinton building at Dinton Pastures. The collection is available to members who need slides to illustrate lectures. Mr Halstead, who has spent many hours sorting out the collection, urged anyone who borrowed slides to return them promptly and put them back in their correct places. There are certain types of picture that are poorly represented in the collection: these include slides of habitats, host plants and BENHS members engaged in entomological activities. Further donations of this type of material would be most welcome.

14 July 1998

Mr R. D. Hawkins showed two beetle larvae. The first was a larva of a species of Scymnus (Coccinellidae), possibly S. frontalis F., found by Mrs G. Jeffcoate on 13.vii.1998 in a clay pit at Holmwood, Surrey. The second was an unknown red-brown larva with spines and hairs. It was found crawling over chalk grassland at Park Downs, Banstead, Surrey on 7.vii.1998.

Mr B. C. Eversham showed some scarce wetland ground beetles (Carabidae) found at Pitsford Reservoir, north of Northampton. The reservoir was created in the 1950s, and is now owned by Anglian Water plc. Its margins are managed as a Wildlife Trust reserve. On three visits this year, with a local coleopterist Mr Peter Sharpe, 53 species of ground beetle have been recorded, including 10 wetland species which are classed as Notable B, some of which are likely to prove new to the county.
Five species were exhibited: *Blethisa multipunctata* L., a large and distinctive species with a brassy sheen and dimpled elytra. This species is usually found among rich, fen vegetation including marshes and lake shores; it was frequent among *Glyceria* and *Phragmites* litter just below the strandline. *Bembidion quadripustulatum* Serville, which occurred in small numbers in shallow, temporary pools on clay soil in a woodland ride. A very local species with a south-eastern distribution, which appears to be new to Northants. *Pterostichus gracilis* Dejean, one of many species of black *Pterostichus* found in wetlands; this is local but widespread, and usually found on clay soils. *Agonum piceum* L., although not classed as nationally scarce, this species is local and widely scattered. It was by far the most abundant *Agonum* among *Glyceria maxima* adjacent to willow carr beside the reservoir. *Badister unipustulatus* Bonelli, a striking red and black wetland beetle, was unusually abundant in the rich vegetation of the reservoir shore, probably the most abundant larger ground-beetle. A species apparently new to Northants. It is somewhat puzzling that a man-made wetland should support so many scarce species. The answer seems to be that several small streams with marshy margins fed the valley in which Pitsford Reservoir lies, and the surrounding grassland had never been subject to fertilizer or pesticide applications.

Mr R. W. J. Uffen showed a live *Lyttia vesicatoria* (L.) (Spanish Fly) (Coleoptera, Meloidae) found in a shallow sandpit near Bovingdon, Dorset on 4 July 1998. There was no nearby source of the adult beetle’s preferred foods of ash or privet. The site had been praised for its aculeate fauna on a visit the previous day by members of the Dipterists Forum and Bees Wasps and Ants Recording Society, but Messrs Halstead, Perry and Uffen, visiting the pit on their way home, were frustrated by indifferent weather.

Dr D. S. Hackett showed specimens of three beetles from Millwards Park, Hertfordshire, all taken on 5 July 1998. These were *Epiphanis cornutus* Eschscholtz (Eucnemidae), originally from the USA but now widespread in Britain and found on poplar and sycamore. *Ampeclus cardinalis* (Schiodte) (Elateridae) found on an oak trunk and the first record from Hertfordshire, and *Mycetochara humeralis* F. (Cistelidae), beaten from beech foliage.

The following persons have been approved as members by Council: Mr Lawrence Brown, Miss Jenni Johnstone, Mr Paul Lee, Mr John D Stanney and Mrs Carol A. Williams.

Dr Martin Luff spoke on "British Ground Beetles—Facts and Fancies". There are currently 349 species of Ground Beetles (Carabidae) found in Britain, but there is a constant turnover of species with seven species lost and nine gained since 1970. The carabids range in size from 1 mm to 25 mm and with a few exceptions, such as those belonging to the genus *Notiophilus*, have a very similar body plan. Dr Luff then continued by describing the biology of the species, most of which feed on other insects and invertebrates. There are exceptions with some plant-feeding species such as *Harpalus ruipes* DeGeer which feeds on seeds. The adults may be present throughout the year or may show marked seasonality with, for example, *H. affinis* Schrank having a bimodal activity pattern, *Amara apricaria* Paykull appearing in the autumn and *Pterostichus madidus* F. peaking in mid-year. The great majority of species are nocturnal. The eggs are often enclosed in soil capsules which seem to protect them from fungal attack. The larvae are soil dwelling. The carabids are useful for environmental monitoring and a standard protocol for carabid trapping has been devised. This uses polypropylene pots, containing blue antifreeze as a preservative, for pitfall traps. Nine traps are used per site and are placed, in a row, two metres apart. Sampling is carried out continuously from April to October and the traps examined at two to four week intervals. The catch from all the traps at one site is
pooled. Dr Luff gave some examples to illustrate the usefulness of the trapping protocol. One example was that of *Nebria brevicollis* F. and *N. salina* Fairmaire which are difficult to separate morphologically but which occupy different habitats with *N. salina* being found at higher altitudes. A trapping exercise in a river valley on the Scottish border demonstrated the habitat separation of the two species. Data from the Carabid Mapping Scheme suggested a decline in many species. For only 96 species was their occurrence greater post-1970 compared with pre-1970. The occurrence of 239 species was greater pre-1970 than post-1970. One site which has been monitored for eleven years has shown a decline in species from 45 at the start of the period to 30 at the end. Maps showing various distribution patterns were shown. *Abax parallelepipedus* Piller & Mitterpacher is unusual in that it is found everywhere except the extreme north-east. *Badister bipustulatus* Fab. has a common type of distribution in that it is widespread in the south but is restricted to coastal habitats in Scotland. There are also a few species that are coastal in the western part of their range. In contrast *Broschus cephalotes* L. is almost exclusively coastal and only occurs inland in hot, dry summers. Some species have a northern distribution, *Nebria gyllenhali* Schönherr is a north and north-western species and another northern species, *Pterostichus cristatus* Dufour, is restricted largely to the north-east. *Leistus rufomarginatus* Dufschmid is an example of a species which has spread rapidly from a few southern sites in the 1960s to Cumbria and the Isle of Man in 1998. Distribution patterns in Britain often do not agree with continental distribution patterns but it is not known why this should be.

8 September 1998

Dr D. S. Hackett exhibited a specimen of the Cetonine beetle *Oxythrea finestra* (Pod.) (Col.: Scarabaeeidae) found on a nature reserve at Chalk Farm, north London. According to Jessop (*Handbooks for the Identification of British Insects, 5*(11), 1986) the species is doubtfully British. The most recent records are from Lancashire. This specimen was found feeding on a thistle flower and was the only one seen. It is not known whether it was a vagrant or is breeding in the area. The larvae would be in plant roots or dead wood like other Cetonines. The adult can be recognized by its black non-metallic (slightly metallic in this case) colour and white pubescent markings, including those on the pygidium, and its smaller size than *Cetonia aurata* L. The elytra are notched for elytra-down flight.

Mr R. D. Hawkins wondered whether, at a time of climatic warming, the cetoniid exhibited by Dr Hackett could be an example of a continental European species colonizing warmer London habitats first.

Mr I. D. Ferguson exhibited a live full grown caterpillar of what appeared to be *Semiaspilates ochrearia* (Rossi), the Yellow Belle. This is normally a double brooded species occurring in the larval state in June and July and again from September through to the following April. It was swept from the dunes at Sandwich Bay, Kent on 2.ix.1998. Adult females were seen the same day thus larvae should have been, at best, recently hatched. The larva was a Geometrid, colour pale straw with black speckles, with prominent anal points and measuring 38 mm, thus matching the description of *S. ochrearia*. Further, when disturbed, it curled its head under its body to form a figure “2”, a feature of this species. This could be evidence of an attempted third brood. Two other examples were found but had been “stung” by a parasitoid; one was sent to Dr Mark Shaw in Edinburgh.

Dr I. F. G. McLean exhibited two specimens of *Aphrosylus* (Diptera: Dolichopodidae) from groynes at Cromer, Norfolk on the 9.viii.1998. These were
Aphrosylus raptor Haliday and A. ferox Haliday. On the first day of a family holiday based in North Norfolk, an excursion to the beach at Cromer at low tide revealed some characteristic predatory Diptera on groynes covered with barnacles and seaweeds. Males of the genus Aphrosylus have flattened, spatulate palpi which are 'silvered' on one face. These palpi catch the light and flash brightly as the flies scurry across exposed intertidal substrates. The role of these visual signals, whether in courtship or some other behavioural interaction is not yet known. Most Aphrosylus species are typically found on rocky coasts, but on the sandy beaches of North Norfolk they can evidently survive on the artificial hard exposures provided by wooden groyne, which have been erected here as coastal defences.

It was announced that Mr Brian Nelson of Belfast had been elected an Ordinary Member and that the Invertebrate Conservation Centre of the Zoological Society of London had been elected a Corporate Member of the BENHS.

On behalf of the LNHS, Miss Ruth Day reported on the planning application by the London Borough of Havering for development of part of the Inner Thames Marshes SSSI including part of Rainham Marshes. The London Wildlife Trust was putting in a counter planning application for a nature reserve and the RSPB was applying for Heritage Lottery funding to buy the land for the nature reserve. The LNHS and BENHS had written to the RSPB in support of their bid for funds.

Mr R. K. Merrifield reported that he had found a larva of the Elephant Hawkmoth (Deilephila elpenor L.) feeding on Himalayan Balsam (Impatiens glandulifera Royle).

Mr R. D. Hawkins said that the beetle larvae he had exhibited at the previous meeting had been provisionally identified by Dr R. G. Booth as Drilus flavescens Geoffr. (Coleoptera: Drilidae). The larva had now eaten a snail, which appeared to confirm the identification. Remarking on a poor season for Lepidoptera, Mr Hawkins said that there had not even been any codling moth (Cydia pomonella L.) larvae in his apples.

Dr J. Muggleton reported seeing at least two specimens of the clouded yellow butterfly (Colias croceus Geoffr.) flying on the abandoned route of the Winchester by-pass at Bar End, Winchester on 22.viii.1998. In what seemed to have been a poor year for migrant butterflies the only other migrant he had seen had been a very worn specimen of the Painted Lady butterfly (Cynthia cardui L.) in central Manchester on 19.vi.1998.

Dr Tom Brereton gave the Brad Ashby Memorial Lecture on "New aspects of conserving the pearl-bordered fritillary". work carried out by Butterfly Conservation and funded by a grant from ICI.

The work involved a national review of the status of the pearl-bordered fritillary butterfly (Boloria euphorusyne L.) and an investigation of its population structure and habitat requirements. A survey had been carried out by Butterfly Conservation local branch recorders with help from other conservation bodies, and over 700 sites had been visited. In the past the butterfly had been recorded from 850 10 km squares but today it was found in less than 200 10 km squares. It had disappeared from at least half of these squares in the past fifteen years. There were now around 350 colonies at 250 sites. The habitat of one-third of the colonies was a mosaic of bracken, grass and scrub; one-half of the colonies were in woodland clearings and the remainder were in open woodland.

The breeding sites typically have a dry, short, sparse vegetation with plenty of Viola and leaf or bracken litter. In the past coppice clearings were an important habitat but now the clearings formed by rides, pylon lines and young conifer plantations are important. There are three types of open woodland habitat: birch,
oak and woodland characterized by the presence of ash, rowan and dogs mercury, the latter being a newly discovered habitat type.

The pearl-bordered fritillary is a species of traditionally managed countryside and cannot compete with intensive cultivation or the improvement of marginal hill land. The abandonment of hill grazing is another factor in its decline but in some places over-grazing can be a problem. Its decline from woodland clearings follows them becoming too shaded as the result of a lack of coppicing, the maturing of conifer woodland and rides becoming overgrown. The rate of decline appears to be less in Scotland where more traditional land management prevails but proposed schemes to encourage the natural regeneration of woodland in Scotland may pose a new threat. The second phase of the programme will be to make progress with conservation work. Immediate action is needed at sites where the butterfly is about to become extinct. This may involve leaving, rather than removing, bracken and the continuation of grazing regimes or their replacement by cutting and burning. Incentives can be offered to farmers via the countryside stewardship initiative, which can give financial support to help maintain sites. In woodland fresh clearings need to be created, but a long term future in woodland can only be assured if regular coppicing is reintroduced. In this respect it is worth noting that the Forest Authority has a scheme for encouraging coppicing, whereas for other sites grants may be available from the Forest Authority for woodland improvement which could include the removal of conifers.

13 October 1998

Mr R. D. Hawkins showed an unnamed geometrid caterpillar that he had swept from blackthorn suckers growing out of grass (later named by G. A. Collins as the broken-barred carpet *Electrophaes corylata* Thunb).

The following persons have been approved by Council as members: Miss Helen Ball, Mr Lee Bullough, Mr Mark Gardener, Dr Aubrey Jones, Capt. Francis Lowe, Mr Peter Maton, Mr Steven Nash and Dr Raymond Wilson.

Mr S. R. Miles showed a copy of a report produced by English Nature of a symposium held on veteran trees entitled “Parkland—the way forward”. Copies can be obtained by telephoning 01733 455101.

Mr R. Sofley noted that there seemed to be few orb-web spiders compared with the same time last year. Dr J. Muggleton confirmed this, saying that this year he had received no phone calls on this subject, whereas last year he had had as many as seven a day. Mr A. Halstead noted that the green shield bug *Palomena prasina* (L.) was also less abundant this year.

Dr Richard Lindsay spoke on “Bogs, bugs and battles”. In particular he talked about the Flow Country area of north Scotland and the battle to change people’s perception of the value of this extensive blanket bog, which covers much of Caithness and Sutherland. Small areas were protected as nature reserves but the rest was widely regarded as a wasteland of no particular value. The speaker was part of a team which in the 1980s began surveying the whole area to assess its conservation value. As there are few roads in the area this involved spending many days camping out with rain expected two days out of three. While the survey was taking place, large areas of bog were being drained by deep ploughing for planting with conifers. Tax benefits for forestry at that time made this a profitable venture for people paying the top rates of tax. Some pop stars and other show business personalities were prominent investors in these new plantations. The wettest areas were being left unplanted but their ecology was being changed by drainage of the surrounding land.
In order to survey the blanket bog, it was necessary to produce new descriptive terms to define the micro-habitats, such as hummocks, sphagnum hollows, ridges and pools, both temporary and permanent. The distribution of *Sphagnum* species and other plants in these habitat types was recorded. Blanket bog is a globally rare habitat and the Flow Country has unique features that make it different from blanket bog elsewhere in Europe. Peat bogs elsewhere in Europe often have trees and are fed by snow-melt water. The Flow Country is virtually without trees, except where planted, and is kept wet by high rainfall. A party of experts from the International Mire Conservation Group was invited to visit the Flow Country. They agreed that the area was of great conservation importance.

This view was put to the Prime Minister and the Department of the Environment, urging a change in policy for the area. This was picked up by the press and other media, and it was also discussed in the House of Lords. The government responded by asking the Nature Conservancy Council to prove that the whole 400,000 hectare area was of global importance and gave them a year to do so. The team made use of the then new technology of computer mapping to present their information. This was used to show the distribution of rare plants and animals, and the effects that forestry and other land uses was having. The system was also able to produce models of likely future effects if drainage and forestry was allowed to continue. A well-produced case won the argument and the threat of more forestry effectively came to an end when Nigel Lawson withdrew the forestry tax benefits in his 1988 budget. The Flow Country is currently being proposed as a World Heritage Site.

### SHORT COMMUNICATIONS

*Agri1us sinuatus* (Olivier) (Col., Buprestidae) new to Wales.—An exploration of the ancient parkland of The Hendre (SO463135), a few miles to the west of Monmouth in VC35 (Monmouthshire), 10.iv.1998, resulted in the discovery of the characteristic D-shaped exit holes of *Agri1us sinuatus* in a mature hawthorn. This is an addition to the Welsh list. Other wood decay Coleoptera noted during the visit include *Ctesias serra* (Fab.) (Dermestidae), *Xestobium rufovillosum* (Degeer) (Anobiidae), *Prionychus ater* (Fab.) (Tenebrionidae) and *Phymatodes testaceus* (L.) (Cerambycidae), all from ancient oaks and all of very localised occurrence in Wales.

My thanks to The Rolls of Monmouth golf club for permission to enter the site.—KEITH N. A. ALEXANDER, 14 Partridge Way, Cirencester, Gloucestershire GL7 1BQ.

*Hypulus quercinus* (Quensel) (Col., Melandryidae) new to Gloucestershire.—Amongst the invertebrates found by the Gloucestershire Invertebrate Group in Pinbury Park (SO952052), near Edgeworth in E. Gloucestershire, 21.vi.1998, was a single specimen of *Hypulus quercinus*. It was found in a large decaying oak snag by John Harper. Pinbury Park includes a large concentration of ancient parkland oaks, plus a few ashes and field maples, all currently enveloped within mixed secondary woodland. This find represents the first wood decay species of any particular note from the site.—KEITH N. A. ALEXANDER, 14 Partridge Way, Cirencester, Gloucestershire GL7 1BQ.
BENHS FIELD MEETINGS

California Country Park, 16 June 1996

Leader: Peter Chandler. After a series of field meetings, workshops and numerous other recording visits to Dinton Pastures since the Society became established there in 1992 it was decided to investigate its sister Park, also operated by Wokingham District Council.

This is a very different area. It includes Longmoor Lake, a water body of longer standing than the gravel pits at Dinton Pastures, which provides a focus for the recreational areas of the Park. The lake occupies a central position in the Park, which is otherwise extensively wooded. To the east there is higher ground with drier woods but this meeting was confined to the areas to the north-west of the lake, which is a low lying wetter area dominated by alderwoods. It includes the permanently wet alder swamp area termed the "Everglades", which is traversed by boardwalks. There is also an enclosed area of heathland, adjoining these woods, which is being actively managed to restore it and is lightly cattle grazed to limit regrowth of scrub. These areas constitute Longmoor Bog, which is an SSSI and local nature reserve.

The day of the meeting itself was marked by excessively high temperature and humidity, which limited activity both of insects and the six members who attended. We initially found that the day had fortuitously coincided with a BBONT event, resulting in a chance encounter with Brian Baker by the Lake. We then proceeded through the narrow belt of woodland separating the lake from the heathland. Much of the morning was spent in this area, from which we took the boardwalk winding through the alder swamp to emerge in one of the drier grassy glades on the east side of the woods. Here there is a small artificial pond, by which we broke for a much needed lunch stop. Four of the party proved refreshed enough to proceed further in the afternoon, when we investigated the more mixed drier woods adjacent to the stream before it enters the swamp, crossing two scrubby rides (one of them with pylons) and a recent clearing, finally reaching another area of alderwoods at the north end of the site. We then returned more directly through the glades to the lake.

At the time of the visit the heathland had recently been cleared of pines and appeared overgrazed; there was concern expressed that pollution of the surface waters might become a problem. Subsequent visits have tended to suggest that this was a temporary phenomenon and grazing pressure does not seem to have had any obvious adverse effects. There is a dead standing pine trunk in the area which is a focus for wood nesting aculeates. Pemphredon lugubris (Fab.), Cossocerus megacephalus (Sphecidae) and Trichrysis cyanca (L.) (Chrysididae) were recorded.

The cattle were considered beneficial by Roger Hawkins, who was surprised to find four species of dung beetles (Scarabaeidae), Aphodius equestris (Panzer), A. granarius (L.), A. ruifpes (L.) and Colobocephurus haemorrhoidalis (L.), in their dung. He also recorded Anisodactylus binotatus (F.) (Carabidae) both on the heathland and in leaf and twig litter in the northern clearing.

About 45 species of Coleoptera were recorded on the day, including five species each of Elateridae (among them Amphedus balleatus (L.) on the heathland) and Cantharidae. Other finds included Grypus equisetii (Fab.) on horsetails (Roger Hawkins) and Limnobatris pilistriata (Sieph.) (Malcolm Storey) (Curculionidae) in the swamp and fresh emergence holes of Agrius pannonicus (Piller & Mitterpacher) (Buprestidae) in a fallen oak trunk in the northern woods (Andrew Halstead). Halyzia 16-guttata (L.) (Coccinellidae) was beaten from an oak by the car park and in the woodland glades.
The boggy pools on the open heathland were attracting both *Sericomyia* species (Syrphidae). Other hoverflies noted in this area included *Chrysogaster virescens* Loew. *Sphingina elegans* Schummel was present in the woods. The hoverfly *Chalcosyrphus nemorum* (Fab.), which develops in dead wood, was observed by the pond where we had lunch. The sphecid wasp *Crabro scutellatus* (Scheven) (Sphecidae) was also seen in flight by this pond.

This is a particularly good site for craneflies. Both *Pseudolimnophila* species (Limonidae) and *Ptychoptera minuta* Tonn. (Ptychopteridae) were present in numbers in the swamp areas where *Tipula maxima* Poda (Tipulidae) was an obvious inhabitant. *T. yerburyi* Edw. and *Diceromyia lucida* de Meij. (Limoniiidae) were also recorded by John Dobson. Other alderwood species found were *Euphyllidorea aperta* (Verr.) and *Pilaria fuscipennis* (Mg.).

*Eustalomyia hilaris* Fall. (Anthomyiidae), a cleptoparasite of dead wood nesting solitary wasps, was observed ovipositing in a pine log in the northern clearing by Andrew Halstead, where he also swept the bee *Chelostoma florisomne* (L.) (Megachilidae). On the return walk through the grassy glades, which are managed for marsh orchids, *Rivellia syngenesiae* (F.) (Platystomatidae) was found to be present in numbers. The asilids *Dioctria baumhaueri* Mg. and *D. rufipes* (De Geer) were about on the heathland and *Neoitamus cyanurus* (Loew) was seen in the woods.

Ten species of Heteroptera recorded by Roger Hawkins included the predatory shieldbug *Rhuacognathus punctatus* (L.), which was swept by Andrew Halstead in the pylon ride.

The heathland pools were attracting dragonflies: *Pyrhosoma nymphula* (Sulzer), *Coenagrion puella* (L.) and *Libellula depressa* L. were observed. Sixteen species of sawflies were recorded on the day and in addition leaf rolls of *Blennocampa phyllocolpa* Vikasaari & Vikberg were found on wild *Rosa*. Among other miscellaneous records were two species of snakeflies (Raphidioptera). *Raphidia notata* F. recorded in the swamp by Malcolm Storey and *R. maculicollis* (Steph.) noted by Andrew Halstead.

Being previously unfamiliar with the site, I had made three reconnaissance visits earlier in June 1996, when some interesting species had been found and since this meeting I made three further visits in 1996 and another three in 1997 so the Diptera are now becoming well known with a rather different range of species to Dinton Pastures. Future visits to improve knowledge of other orders in this interesting area would be valuable.

**Dinton Pastures, 17 May 1997**

Leader: **Peter Chandler.** This meeting was arranged to investigate the areas newly added to Dinton Pastures Country Park, to the west of Bader Way. This area is divided into seven compartments for the purposes of the Management Plan and recording was based on these areas. The Society had been asked to advise the Country Park on the conservation of one small part of this area defined as a relict wet meadow (compartment 2). With this in mind, the meeting was attended by two representatives of the Society’s conservation advisory committee. Stephen Miles and Raymond Uffen. Altogether nine members were present and records were gathered of all the major orders.

The day was mainly fine with some bright periods. The itinerary began at the northern end, starting from the car park adjacent to the Aviation Museum. In the morning the first three compartments were covered. At the northern end is an extension of Sandford Mill Copse (otherwise known as Bader Copse) (compartment 1). This is mainly dense dry oak and hazel woodland, but the northern
part has recently been coppiced and is now quite open; to the south it slopes down to an alderwood and stream which borders the “grassland” site (compartment 2), which is sandwiched between the copse and the Northern Lake, otherwise known as Redwood Lake (compartment 3). This lake has a dense wooded margin and a narrow area of scrubby ground between this and the road. Lunch was had at the south end of this lake at the edge of a wider area of scrub and grassland (compartment 4). The afternoon took us rapidly through this and past a small copse (compartment 5) into an area of “relict ancient grassland” (compartment 6), a generally lusher area but with apparently poor flora of which grazing following annual cutting in July is proposed. More time was spent on the margin of the Southern Lake (compartment 7), which has a fringe of high woodland and a margin of carr and marsh vegetation.

Having completed the tour of the new areas, the party reached the bank of the River Loddon at the point opposite the newly constructed “park and ride” area, which has replaced an interesting area of marginal vegetation just outside the park limits. A more rapid return journey followed the west bank of the Loddon past the varied grassland and fen areas of Mortimer’s Meadows. This enabled those members not already familiar with the Park to compare some of the other habitats with the new areas.

The species found in area 2, including some widespread species which are already known from other parts of the Park, are particularly noted below. This area was evidently originally part of the water meadows and retained some Glyceria and other marsh vegetation around the fringes. However, it had evidently been subject to spoil dumping, perhaps when the adjacent road was built. This had resulted in the greater part of the area now being covered with ruderal weed species, especially comfrey (Symphytum sp.), nettles (Urtica dioica), cleavers (Galium aparine), rosebay (Chamerion angustifolium) and docks (Rumex sp.). The value of this flora for common Lepidoptera species was noted and it was considered that restoration of marsh conditions to benefit plants other than Glyceria would be difficult with the low water table now prevailing. It was concluded that a minimum of management involving maintaining the area free of scrub encroachment would be the most appropriate solution for this area.

The 33 species of Lepidoptera recorded by Gavin Boyd included 10 additions to the list for the Park, mostly “micros”. Among these Alabonia Geoffrella (L.) (Oecophoridae), which is a dead wood feeder, was recorded in Sandford Mill Copse. In the same area Adela reaumurella (L.) and Nematopogon swammerdamella (L.) (Incurvariidae) were on the wing. Eight species of common butterflies were observed during the day and Euclidia glyphica (L.) (Noctuidae), also known from Mortimer’s Meadows, was about in areas 4 and 6.

Coleoptera were well recorded, 74 species being noted. A “Notable A” click beetle Ampedus Elongantulus (F.) (Elateridae), associated with dead wood, was recorded by Andrew Halstead. It was sitting on a grass stem near the concrete drainage channel by the road at the junction of areas 2 and 3. Two “Notable B” ground beetles, Badister dilatatus Chaudoir and Oodes helioptoides (Fab.) (Carabidae) were found by Ian Hoare at the margin of the Southern Lake. The water ladybird Anisosticta 19punctata (L.) (Coccinellidae) was found by both Lakes.

Eight species of water beetles were recorded from the Southern Lake, a useful addition to the range of insects recorded in the Park. These included the “Notable B” Heloaches lividus (Forster) (Hydrophilidae) recorded by Matthew Smith and several local species, among them Cymbiodyta marginella (Fab.) (Hydrophilidae), Coelambus impressopunctatus (Schaffer) and Copelatus haemorrhoidalis (Fab.) (Dytiscidae). Three further species were found in a water trough for cattle in the enclosed part of Mortimer’s Meadows.
Other beetles found included the brightly marked *Endomychus coccineus* (L.) (Endomychidae) by both Lakes and the cerambycid *Agapanthia villosoviridescens* (De Geer) from the longer vegetation at the edge of area 4 bordering the copse of area 5; this develops in stems of umbelliferous plants like another species previously recorded in the Park, *Phytocera cylindrica* (L.) but is an interesting addition to the Dinton list, which is known to have been spreading to new areas in recent years. Among a good list of species for area 2 were two species of *Paederus* (Staphylinidae), found in other fenny parts of the Park, *Silpha atrata* L. (Silphidae), *Cidnopus minutus* (L.) (Elateridae), *Oedemera lurida* (Marsham) (Oedemeridae), *Bruchus rufipes* Herbst (Bruchidae), *Chrysolina polita* (L.), *Cassida vibex* L. and *Plagiodera versicolora* (Laicharting) (Chrysomelidae), *Rhynchites aequatus* (L.) (Attelabidae) and the “Notable B” weevil *Ceuthorhynchus rapae* Gyll. (Curculionidae).

Seventeen species of sawflies were recorded by Andrew Halstead. Those in area 2 were *Aglaostigma fulvipes* (Scop.), *Loderus versmanni* (Kirby), *Macrophyia duodecimpunctata* (L.) and *Nematus oligospilus* Foerster (Tenthredinidae). South of Redwood Lake, *Loderus vestialis* (Klug) and *Dolerus germanicus* F. were present. *Macrophyia annulata* (Geoff.) was found in Sandford Copse and *M. montana* (Scop.) in area 6.

Matthew Smith recorded the six common *Bombus* and two *Psithyrus* species (Apiidae). Solitary species were few but *Andrena scotica* Perkins (Andrenidae) was recorded in areas 1 and 4. *Prioctenemis perturbator* (Harris) (Pompilidae) was recorded by Gavin Boyd, who noted that the left forewing venation was aberrant in that the third submarginal cell was divided in two by an extra horizontal vein, the right wing being normal.

Few Hemiptera were recorded but *Aelia acuminata* (L.) (Pentatomomidae), which is common in the Park, was noted in area 2 and *Centrotus cornutus* (L.) (Membracidae) in area 4.

Nothing unusual was found among the Diptera recorded. The few hoverflies included both species of *Xanthogramma* and the bulb fly *Merodon equestris* (Fab.) in areas 2 and 3; *Parhelophilus versicolor* (Fab.) was present in area 6, suggesting that it had developed in the Southern Lake. The asilid *Dioctria atricapilla* Mg. was about in the longer grassy parts of area 6 and the cranefly *Tipula vernalis* Mg. (Tipulidae) was numerous in area 4. Andrew Halstead drew attention to galled fruitlets caused by *Contarinia pyrivora* (Riley) (Cecidomyiidae) on an isolated pear (*Pyrus*) in area 4. Flies found in the wetter parts of area 2 included *Calamonecosis glycerae* Nartshuk (also in area 7), which develops in *Glyceria* (Chloropidae), *Cleigaster apicalis* (Mg.) (Scathophagidae) and *Trigonometopus frontalis* (Mg.) (Lauxaniidae), both associated with *Carex*.

A report including the recommendations mentioned above regarding the conservation of area 2, together with comments on the management of some of the other compartments, was submitted to the Country Park by Stephen Miles and produced a positive response from the park management.

---

**Prescombe Down National Nature Reserve, Wiltshire, and Melbury Down, Dorset**

21 June 1997

Leader: **Stephen Miles.**—This Conservation Working Group meeting was proposed by the leader to assist in record gathering for an area that appears to be poorly recorded on most dot maps of species. Additionally, as a double site meeting,
it gave the opportunity to contrast the management regimes operating at the two sites in terms of the entomologist's point of view.

**Prescombe Down**

Six members including the leader assembled at Prescombe Farm to be met by our guide, Linda Smith, from the local English Nature office. On entry to the start of the reserve, we were immediately alarmed by what appeared to be overgrazing, and the low height (2.5 to 5 cm) of the grazed sward and absence of chalk downland flowers, the sheer uniformity of the site. I think this site did not conform to our visions of what a National Nature Reserve should be! Probably at least 120 head of cattle of all ages were present on the 167 acres. The striking thing was that they appeared to have access to the whole site with no areas demarcated as off-limits by temporary electric fencing, thus preserving some longer grass roosting sites and flowers for nectar seeking insects.

At least the sward was a little longer when we reached the south west facing scarp slopes. Here the first interesting insects were seen, two worn adonis blues, *Lysandra bellargus* Rott., which in fact do require a rather low sward. Maximum numbers of eggs have been found, according to past research, where the turf height was between one and three centimetres high, (BUTT, 1986). However, even this publication recommends rotational grazing of compartments to achieve this.

Two examples of the spider parasite, the fly *Ogcodes pallipes* Latreille (Acroceridae), were taken by different members, one of whom remarked that he had taken it from a swarm flying around a hawthorn branch of a tree growing in an isolated clump. This is a notable species which when all conditions are favourable sometimes occurs following mass emergences, (Oldroyd, 1969).

There were three dipterists, two coleopterists and one hymenopterist present; however, the site and the wet weather precluded any solitary bees and wasps from being found. Further interesting Diptera found were the lauxaniid, *Sapromyzza opaca* Becker, taken by Adrian Plant, the conopid, *Thecophora atrata* (Fab.) by Mick Parker and the tachinids, *Exorista tubulosa* Herting and *Prosera siberita* (Fab.), the last of which according to Peter Chandler, their captor, is more usually associated with heathland situations.

Ian Hoare remarked in his notes for the day that half the species he had taken were coprophilic, so that the cattle, by their dung, were adding to the diversity of species! The more interesting beetles were *Onthophagus coenobita* (Herbst), *O. joamiae* Goljan (Scarabaeidae), *Cryptocephalus hypocharaerdis* (L.) (Chrysomelidae) and *Larinus planus* (Fab.) (Curculionidae).

The early gentian *Gentiana anglica* (Pugsley) was readily seen on the thin soils of the steeper slopes of this unimproved grassland. Corn bunting were also seen by Adrian Plant.

Thanks are due to English Nature's Central Wiltshire Branch staff members. David Burton for making the arrangements and especially to Linda Smith for her guidance on the site on the day, and to the landowner.

**Melbury Down**

Several heavy showers were experienced during the afternoon and these probably adversely influenced the species seen and collected. One member observed a specimen of the wood tiger moth *Parasemia plantagniis* (L.) which is a fairly typical denizen of this type of site, though more scarce nowadays. This site was richer in numbers of Lepidoptera than Prescombe Down due, presumably, to the lack of summer grazing.
This was exemplified by the species composition of tachinid flies, which included species more characteristic of chalk grassland. These included the local species, *Eriothrix proliva* (Mg.) and *Demoticus plebejus* (Fall.), the latter being scarce and confined to downland, both are parasites of Lepidoptera.

Several dark green fritillary *Argynnis aglaja* L. butterflies were seen to emerge from the adjacent northerly beech plantations and to fly into the lower slopes of the chalk grassland. Even after recent rain they could be seen perching on grass stems. The food-plants of a number of typical chalk downland butterflies could be readily found, such as horseshoe vetch *Hippocrepis comosa* L., but the grassland was probably too long for the adonis blue, none of which were seen.

One experienced member felt that in spite of the steepness of the site there was a surprising lack of bare ground that might normally be expected to result from this type of slope. As a consequence of this and the perceived limited grazing it was felt that the site was in danger of invasion by coarse grasses. Indeed two such grasses were present. Upright brome *Bromus erectus* Hudson occurs throughout the site at worrying densities. Tor grass *Brachypodium pinnatum* (L.), however, was fortunately limited to the level areas at the top of the slope adjacent to the road.

Of course the longer grassland is valuable in providing shelter and roosting sites for the insects of short turf. We do not really know what this site is being managed for. It may be that the limited grazing is being used to preserve the special interest alluded to in the National Trust handbook, where the site is described as botanically rich. Further to the west there was evidence of good quality chalk grassland with patches of horseshoe vetch *Hippocrepis comosa* L. and large anthills with coverings of thyme (*Thymus* sp.). The flowerheads of some large patches of kidney vetch *Anthyllis vulneraria* L. were searched for the eggs of the small blue butterfly, but none were found. One specimen of the fragrant orchid *Gymnadenia conopsea* (L.) was seen in the grid square ST8919.

It had been hoped to attract lepidopterists to the site for an evening meeting of light-trapping but owing to the adverse weather—heavy squally showers, strong westerly wind and cold temperatures—no lepidopterists arrived.

Thanks are due to Graham Heard for giving permission for the meeting to go ahead, and also to Simon Evans, both of The National Trust.

---

**References**


---

**Marks Hall Estate, Essex, 2 August 1997**

(Joint Colchester Natural History Society/British Entomological Society Meeting)

Leaders: Joe Firmin & Jerry Bowdrey. The Estate, situated near Coggeshall (TL82) in north Essex (VC19) comprises an interesting mosaic of deciduous woodland, some partly conifer plantation, interspersed with areas of acid grassland and wetland areas with alder carr, several ponds and a large ornamental lake. Part of the area is being developed as an arboretum and the whole is managed by the Phillips Trust.

Three members of BENHS and six from CNHS attended the daytime session which was conducted in bright sunshine. It was intended to visit Grange Wood but
the attractions of Alder Carr (TL8325) which we passed en route to the wood, were too much to resist. The alders had recently been coppiced and the ground flora had responded to increased light levels. Insects were abundant but hoverflies, particularly Episyrphus balteatus (Deg.), Metasyrphus corollae (F.) and Syrphus ribesii (L.) predominated, swarming at every flower and making other species difficult to pick out, although Gavin Boyd was able to find Chrysogaster solstitialis (Fallén). Jonathan Cole also took the Notable lauxaniid Sapromyza bipunctata Meigen at this site. Amongst the butterflies was Aricia agestis (D.&S.) (brown argus), a species which has made a dramatic come-back in Essex in recent years.

Moving on to Lily Wood (TL8326) for lunch, Tetrix undulata (Sowerby) (common groundhopper) was found beside a small pond. Nigel Cuming and Dan Hackett beat the buprestid Trachys minutus (L.) from Tilia and vacuum sampling of a dry sparsely vegetated area produced the Notable planthopper Asiraca clavicornis (Fab.).

After lunch, three of us stopped to examine a stack of logs cut for charcoal burning. A sycamore log infested with sooty bark disease produced Cicones undatus Guérin-Meneville, believed to be new to the County. After enjoying refreshments at the visitor centre some of the group returned to examine one of the last surviving ancient oaks where Vespa crabro L. (Hornet) were seen at a sap run, whilst in the arboretum Jonathan Cole took the nationally Notable conopid Conops strigatus Wiedemann.

Daytime recording ended with a look at a different log pile where another buprestid, Agrilus angustulus (Illiger) and the clerid Thanasimus fornicarius (L.) were found. The sandy soil around the log pile had nests of the sphechids Aminihila sabulosa (L.) and Cerceris arenaria (L.). The evening moth session, held in woodland at TL8325 attracted 17 observers and recorded a total of 87 species. Cyclophora punctaria (L.) (maiden’s blush) and Eilema deplana (Esper) (buff footman) were among the 21 species new to the site.

Colaton Raleigh Common, 20 June 1998

Leader: Roy McCormick.—This two-part meeting started fine with very little wind. While I was waiting for the rest of the people to arrive, I spent time looking for seed heads of Cerastium holosteoides Fr. (common mouse-ear chickweed) for the larvae of Paneremia tenebrata (small yellow underwing) but I was too early. By the time I returned to the car park, people had started to arrive. We finished up with twelve of which six were Butterfly Conservation (B.C.), three BENHS and two Devon Moth Group members plus the Warden, Doug Cullen. We all got into convoy behind Doug and we were led onto the site: as the year had been so wet we were advised to put our wellies on. Doug and the B.C. members wanted to have a look at the site where Plebejus argus (L.) (silver-studded blue) breeds and they also wanted to do a count of specimens seen; we saw the species in good numbers and they were reasonably fresh with males and females flying. We made our way to a swampy heathland area so that Doug could show us the successful management for a rare species of dragonfly that had been discovered, Coenagrion mercuriale (Charp.) (Southern damselfly), which was seen in good numbers; Doug tells me that the species is now to be seen on four sites in Devon. While we were on the swampy heath, Bob Heckford, Tony Pickles and I looked for signs of larvae of Buckleria paludum on Drosera rotundifolia L. (sundew). Several signs of eating were found, along with a larva of something else (the larva was in a poor condition and died), but no paludum. Other interesting species seen included one Colias croceus (Geoffr.) (clouded yellow)
and a few Callophrys rubi (L.) (green hairstreak). The session finished around 5.30 pm with the people who came having had a good afternoon. Those of us who needed a meal made our way to Otterton, which is a couple of miles away.

The night part of the meeting started with a new batch of people plus a few of the afternoon ones turning up at the same car park so that we could be led again onto the site by Doug Cullen. This time we had three B.C., five BENHS and five DMG members; some of these belonged to the other organisations attending. We were led back to the site and traps were placed in the woodland and heath areas with one trap being placed next to the patch of woundwort that was seen last year; this was to try and find Philyctena stachyda/is (Germar) but without success. There were around a dozen traps operating but because the night was clear the going was slow, but temperatures remained at around 15°C with a dew coming down early. Despite the conditions we managed to record 130 species, including the few daytime ones. Bob Heckford identified most of the Microlepidoptera, which came to 45 species including the pyralid and plume moths; there were only 3 species of butterflies with 82 macromoths. The more interesting of the total were one Buckleri/a paludum (Zeller) adult on damp heath, one Capperia britanniodactyla (Gregson) seen in the woodland, two Cyclophora albipunctata (Hufnagel) (birch mocha) on the edge of the heath, several Idae/a sylvestraria (Hüb.n.) (dotted border wave) on the heath, one Rhodometra sacraria (L.) (vestal) on the heath, several Euphia biangulata (Haworth) (cloaked carpet) in both types, a few Peroneia strigillaria (Hüb.n.) (grass wave) on the heath, several Dia/eria sannio (L.) (clouded buff) on the heath, several Lacanobia contigua) (D.&S.) (beautiful brocade) on the heath, several Mythimna pudorina (D.&S.) (striped wainscot) on the damp heath and one Schrankia costaestrigalis (Stephens) (pinion-streaked snout) on the heath. By around 01.30 there was little coming in so we set about packing up and we were ready to depart by around 02.30; Tony Pickles opted to stay for the rest of the night; he was in the woodland and added a few species to the list for his trouble.

Denbies Hillside & Ranmore Common, Surrey, 20 June 1998

Leader: Mark Parsons.—Sunny, but breezy, conditions welcomed the five members and two friends who attended the afternoon part of the meeting at this classic site, which is also known as Westcott Downs. A range of Orders was observed during the afternoon with records including species of Hemiptera, Orthoptera, Diptera, Coleoptera, Hymenoptera and Lepidoptera, along with a single Mollusc species (the Roman snail Helix pomatia, live and empty shells being found). Amongst the Coleoptera, perhaps the longhorn Molorchus umbellatarum (Notable A) was the most interesting. The leaf beetle Cryptocephalus aureolus (Notable B) and the mordellid Varimorda villosa (Notable B) were recorded, with at least eight examples of the latter species seen on hogweed flowers. The larva of the glow-worm Lampyris noctiluca was also recorded. Amongst the Hymenoptera, Osmia bicolor (Notable B) was observed visiting the flowers of creeping cinquefoil and wild privet. Rather surprisingly the solitary-wasp Oxybelus uniglumis and the sand-wasp Ammophila sabulosa were recorded, although both species are more usually associated with sandy substrates as opposed to chalk downland. Of the moths, a number of examples of the lace border Scopula ornata (Scopoli) (Notable A) were put up during the afternoon. Several species of plume moth were also seen, including Merrifieldia balioidactylus (Zeller) (larvae and a single adult), M. leucodactylus (D.&S.) and Oxyptilus parvidactylus (Haworth), with both the last species flying in numbers. In
the evening four members and two friends attended, giving a total of six members and two friends attending over the day. Six mercury vapour light-traps and two actinic light-traps were operated on what was a starlit night, but with a gentle warm breeze. A very respectable total of 109 species of macrolepidoptera were recorded over the evening (with an additional three species seen only during the afternoon session bringing the total to 112 species). Additionally about 70 species of microlepidoptera were noted over the day as a whole. Amongst the species seen in the evening session were several that are considered nationally scarce or are scarce in Surrey. These included Coleophora ixella (Zeller); the tortricid Pelochrista caecimaculana (Hübner) (Notable); further examples of the lace border Scopula ornata; a single ruddy carpet Catarhoe rubidata (D.&S.) (Notable B) (Collins G. A. (1997) The Larger Moths of Surrey, Surrey Wildlife Trust) states that this moth “is only known from 14 examples in the last 20 years” in Surrey; several royal mantle C. cuculata (Hufnagel); a single brown scallop Philereme vetulata (D.&S.); a single dark umber P. transversata (Hufnagel); the satyr pug Eupithecia satyrata (Hübner); the shaded pug E. subumbrata (D.&S.); a single alder kitten Furcula bicuspid (Borkhausen) (Notable B); the triple-spotted clay Xestia ditrapezium (D.&S.); several reddish light arches Apaneia sublastris (Esper); and about six rosy marbled Elaphria venustula (Hübner). However, the highlight of the evening was a single example of the dew moth Setina irrorella (L.) (Notable A), a species which had not been seen in Surrey since 1987 (Collins, 1997) and one of the target species for the field meeting. As a consequence of this record a further trip was made to the site, on the 4th July 1998, when over 30 examples were seen, suggesting the presence of a healthy colony.

This proved to be a very productive and enjoyable field meeting to a site which does not appear to have been recorded particularly well in recent years. It is good to know that many of the species which were known from the site historically are still present. I would like to take this opportunity to thank David Kennington and John Cranham of the National Trust for permission to hold this field meeting and for allowing vehicular access to the site. All records from the meeting have been forwarded to the N. T. Biological Survey Team and to David Kennington.

Roborough Wood, Great Torrington, 4 July 1998

Leader: Roy McCormick.—The evening was dry and reasonably warm and by the appointed hour we had ten people, eight of these being Devon Moth Group (DMG) members with five belonging to BENHS as well; there were also two Butterfly Conservation members with one of these belonging to DMG. We made our way to the wood, suggesting trapping sites to those who had equipment. Adrian Henderson decided that there were too many traps, including his own, so he suggested that he find somewhere else, other than Roborough Wood, to run his traps; this turned out to be very fortuitous as he discovered where Moma alpium (Osbeck) (scarce merveille du jour) was in Devon; he saw three that night near to Great Torrington. [I went back the following night to the same locality but at a different site nearby and found another three. This find brought in as many specimens in the two nights as had been seen previously from 1865 to 1956; a further two were seen in 1984 and 1994.] Back in Roborough Wood, the trap sites were well spread out so a lot of walking was done between traps but the list expanded rapidly as it was a pleasant night with a minimum temperature of around 14°C; specimen numbers were low as in the last year but some interesting species were seen, the best of these being: one Phlyctaea
stachydalis (Gemar), one Cyclophora linearia (Hübner) (clay triple-lines), two Orthonama obstipata (Fab.) (gem), two Euphyia biangulata (Haworth) (cloaked carpet), several Chloroclystis debiliata (Hübner) (bilberry pug), around twenty Hydrelia sylvata (D.&S.) ( waved carpet), one Apeira syringaria (L.) ( lilac beauty), two Cleorodes lichenaria (Hufnagel) ( brussels lace), one Paractropis similaria (Hufnagel) (brindled white-spot), four Craniophasis ligustri (D.&S) ( coronet), one Laspeyria flexula (D.&S) ( beautiful hook-tip) and several Hypena crassalis (Fab.) ( beautiful snout). However, there was no sign of our target species, Monia alpium ( scarce mereille du jour) in Roborough Wood. At around 01.30 and with very little coming in it was decided to call it a night, so we upped sticks and left around 02.30 after a final check round the other traps. the others had all come to the same conclusion as they too were packing up. The final tally was 120 species ( with 28 of these being micromoths). The full list has been lodged at Dinton Pastures.

Flanders Moss NNR, Perthshire, 1 August 1998

Leader: Keith Bland. — The venue of this field meeting was the large area of lowland raised peatmoss called Flanders Moss (NS6397), just west of Stirling. The weather was almost ideal with plenty of sunshine but with only sufficient breeze to curtail midge activity. Unfortunately only four intrepid entomologists, namely Mike and Betty Clementson, David Horsfield and the leader were available to enjoy these conditions. The day was spent in good, old-fashioned, net-in-hand recording. Then, after a break for evening nourishment, two generator-operated M.V. lights were run over sheets.

Some 40 species of lepidoptera were noted by day with a similar additional number being recorded at light. A total of 80 species of lepidoptera is a very respectable count for a habitat dominated by heather, sphagnum and birch. On the open moss the pyralid, Catoptria margaritella (D.&S.) was the commonest lepidopteran, with the bilberry tortrix Aphelia viburna (D.&S.) and the manchester treble-bar Carsia sororiiata (Hübner) also tiresomely abundant. Closer to the birches the tortricids Epinotia brunichana (L.) and Apotomis betuletana (Haworth) dominated. The clearance of colonising birch scrub in this part of the moss had been a little over-enthusiastic, thus mines of Atemelia torquatella (Lienig & Zeller) were scarce. The pristine condition of the few Philedone geringana (D.&S.) and Coenonympha tullia (Müller) ( large heath) seemed to suggest that both were just starting to emerge. On the other hand, a very worn specimen of the local Biselachista serricornis (Stainton) indicated that its season was past. The highlight of the day occurred with a slow, laboured fly-past by a fresh female Ochsenheimeria taurella (D.&S.) as luncheon sandwiches and parachutist-watching were being given priority! This appears to be the first confirmed Scottish record for this species. Visitors to the M.V. lights held few surprises. It was nice to see several Idaea biselata (Hufnagel) ( small fan-footed wave), never a common species in Scotland, and a surprise in a habitat of this nature to find a single Yponomeuta padella (L.) on the sheet.

Diptera were the centre of David Horsfield’s attention, with a good set of records again being obtained but not without a great deal of careful searching. However, it was a fly with an attitude, namely an acrocerid, Aerocera globulus Panzer, the humpback or balloon fly, that headed the fly celebrity list of the day. A parasite of wolf-spiders, this was only the third Scottish record. Among the muscids, several local species were taken but none of them unexpected.
BOOK REVIEWS

Aquatic Insects of North Europe—A Taxonomic Handbook: Volume 2, edited by Anders Nilsson. Apollo Books, 1997. 440 pages. A4 hardcover, 550.00 Danish Kroner.—This volume completes a comprehensive multi-author review of the 2800-odd freshwater aquatic insects of northern Europe, which is taken to include Denmark, Scandinavia, Finland and Fennoscandian Russia. Volume 1, published in 1996, dealt with the smaller orders and the Coleoptera, whilst this larger second volume is almost entirely taken up by the Diptera, together with the Odonata. All families which contain truly aquatic representatives are covered, in some cases including the terrestrial representatives as well but more usually comprising only the aquatic elements.

As with the earlier volume, a simple glance at the author list indicates the quality to be expected, taking in as it does so many well-known names from amongst the European dipterological community. These include, inter alia, Hugo Andersson (Ptychopteridae, Scathophagidae), Milan Chvála (Tabanidae), Christine Dahl (Culicidae), Rudolf Rozkošný (Stratiomyidae, Sciomyzidae), Ken Smith (Immature stages), Rüdiger Wagner (Psychodidae, Dixidae, Thaumaleidae, Empididae) and Anders Nilsson himself, who contributed the introduction to adult Diptera as well as editing the work.

Volume 2 commences with a chapter on the Odonata, with excellent new keys to adults and larvae (including small larvae) of all species. This covers all of the British species except the widespread, southern Ceriagrion tenellum, the rare and localised Coenagrion hundatum, C. mercuriale and Sympetrum nigrescens, and some of the extinct and rare vagrant species. These deficiencies are well covered elsewhere, however, and do not represent an undue detraction.

The Odonata are followed by two chapters introducing adult and larval Diptera respectively, with keys to families, and a further 22 chapters covering some 24 families of Diptera. Each chapter typically comprises a brief introduction and review of known biology, highlighting gaps in knowledge, morphology of life stages and methods for collection, preservation, study and rearing. This is followed by keys to adults and, in many cases, larvae and other life stages, references to other relevant literature sources and a checklist indicating national distributions. Many of the keys run to species-level, although some of the keys to larger families run to genera only, with references to relevant key-works to species. The volume is illustrated throughout by some 2055 monochrome line drawings, laid out in 195 clear plates.

It is an exceptional piece of work, bringing together and consolidating a very great deal of material which was previously scattered in the literature. Whilst there are necessarily some differences in scope and coverage between the families, the overall standard is consistently high. The keys are clear and well-illustrated, and in the families I looked at in detail, appeared to cover most of the British species. Users in Britain will find this an extremely valuable tool, although they will need to be watchful when using the keys to species as there are often situations where we have additional species present. This perhaps represents the main deficiency of the work from a British standpoint, falling as we do just outside of the faunistic range covered. It remains necessary to have access to, and knowledge of, the British literature in order to make certain that all of the possibilities have been checked. So, in a typical family such as Dixidae, for example, the handbook excludes mention of the British species Dixa nebulosa, Dixella attica and D. filicornis, for which it is necessary to turn to Henry Disney’s 1975 Freshwater Biological Association key, as well as Dixella graeca which was added to the fauna in 1992 (Entomologist’s mon Mag 128: 165–169). Only the former of these references is mentioned in the handbook bibliography.
Nevertheless, the handbook is likely to become a first source of reference when dealing with aquatic insects in Britain, and on the plus side includes reference to many boreal species not so far recorded from Britain but which may be awaiting recognition.

In recent use I found that I had little difficulty in running down material with a high degree of confidence, bolstered by the good provision of confirmatory characteristics. The literature references and taxonomy are well up to date. The standard of editing is also very high. Whilst some minor infelicities in grammar and spelling are perhaps to be expected, this is truly an English language work and generally reads very well. Inaccuracies are rare. The volume I saw came with a short corrigenda listing six errata, and itself listed 5 corrections to volume 1, evidence of conscientious checking by the authors and publishers.

I recommend the work wholeheartedly. Volume 1 is available at 450.00 DK, and the two volumes are available together at 900.00 DK, all plus postage, direct from Apollo Books, Kirkeby Sand 19, DK-5771 Stenstrup, Denmark. Prices quoted by British dealers vary, but generally come in at around £65 and £75.00, plus postage, for volumes 1 and 2 respectively.

DAVID CLEMENTS

Checkered Beetles. Illustrated Key to the Cleridae of the Western Palaearctic by Roland Gerstmeier. Margraf Verlag, Weikersheim, Germany, 1998, 257 pages, 372 drawings and maps, 128 coloured photographs, hard cover, DM 93.00 (+ 7% VAT).

This book is a very useful addition to the growing number of bilingual well-illustrated guides to European Coleoptera. It includes a brief synopsis of the systematics and biology of the Cleridae and Thanerocleridae, and dichotomous keys to the 124 species known from the W. Palaearctic, with brief descriptions of each species and a synopsis of its distribution, and in some instances a distribution map. It also includes colour photographs of almost all the genera and most of the species known from the region.

For those of us who collect Coleoptera in the Mediterranean region, where Cleridae are more common than they are in N. & C. Europe, this book will be a valuable guide. However, as the author points out, a number of genera, especially *Trichodes*, the most commonly collected and speciose genus in the Mediterranean region, are in need of revision, and the key to *Trichodes* species will be difficult to use without having material for comparison available. I attempted to identify some of my *Trichodes* using the key and had difficulties at couplets 14, 15 and 40 where no illustrations of the diagnostic characters referred to are given. Also on none of the *Trichodes* photographs is there an indication of the sex of the specimens. As the author points out, females in this genus are often difficult to assign to species, and when comparing the colour patterns of specimens with the photographs I would have liked to know if I was comparing the same sex. Another minor criticism is that there is no indication of the actual size of the specimens on the colour plates, although the size range of each species is given at the beginning of each species description.

Despite these slight shortcomings this book will be a valuable addition to the bookshelf of anyone interested in W. Palaearctic Coleoptera.

BRIAN LEVEY

Somerset Hoverflies by E. T. and D. A. Levy. 74 pp & 7 pages of plates of which 4 are in colour, paperback. Privately published by the authors in 1998, supported by a
grant from Somerset Wildlife Trust. Available from the authors at 9 Chilton Grove, Yeovil, Somerset BA21 4AN. £6.00 plus £1.00 postage and packing (UK).

This is the second atlas of hoverflies produced by these authors, who published “Dorset Hoverflies” in 1992. It is based on fieldwork by the authors since 1976 and examination of specimens in local and national museum collections. Published data was checked as far as practicable and information from many other collectors and recorders was incorporated.

Following a general account of the biology of hoverflies, the history of recording in Somerset is described, with brief biographical details of six earlier collectors. The plates include black and white photographs of five of these collectors and four localities. An account is given of the geographical features of Somerset, with more detail on 12 of the “special localities” including lists of the significant species recorded from each of them; suggestions are made as to the possible course of future recording.

Myolepta potens Harris, which has been recorded this century only from the Somerset Levels and Bristol district, is the only British syrphid not to have been recorded in recent years and may now be extinct in Britain. The Somerset localities and the potential survival of the species are discussed, but despite continued availability of larval habitat (rot-holes), the loss is noted of some other species found at its main locality, Loxley Wood, in the 1940s by John Cowley. Another rare species Eupeodes (as Lapprosyphus) lapponicus (Zett.), found by Cowley in Devon, was discovered by the authors at a locality just within the southern border of Somerset.

The main part of the text comprises 10 km square maps with records marked on a tetrad basis for each of 200 species known to occur in Somerset, of which 186 have been recorded since 1980. A brief account is given of each species with details of the first known record for the county. The suprageneric classification and order of species follows that in British Hoverflies by A. E. Stubbs and S. Falk, but an attempt was made to update nomenclature from various sources including articles in Dipterists Digest (to which an apostrophe has intruded). The authors are to be commended for making this attempt, which is explained in a section entitled “The confusion of Latin names presently used”, but this is not entirely successful and there are some inconsistencies in the use of names. They have followed some recent works in using the name festivum in Xanthogramma and their Chrysotoxum arcuatum (L.) is evidently the festivum of Stubbs & Falk, not their arcuatum, although this is not stated (a current application to ICZN, to restore the earlier usage in these genera, will hopefully resolve this problem).

Other nomenclatural changes will be apparent to syrphid enthusiasts, but the most significant is the raising of all subgenera to generic rank; this is presumed to be anticipation on the part of the authors that this might happen, as it is not explained in the text.

A more detailed map of the county shows the 1 km squares including the 864 localities from which hoverflies have been recorded in the county. The four colour plates include twenty photographs of adult hoverflies, mostly of the more frequent species, but including E. lapponicus mentioned above and Callicera aurata (Rossi). The locations and dates for these photographs are not given, but C. aurata must have been photographed outside the county as the only Somerset record cited was made in 1916.

Details of 18 national and local societies and conservation bodies are included in an appendix, with more detail of the funding body. A map showing the location of Somerset woodlands is provided on the rear cover.

This publication is the result of a considerable amount of work by the authors and their collaborators. The Levys are to be congratulated for having brought together
present knowledge on the distribution of hoverflies in their county and having presented it in this informative and easily used format.

Peter Chandler


This is a most scholarly, and at the same time highly readable and useful hardback, produced to the highest standards. Although it is based on the best scientific observations and approaches, it is easy to follow and should suit both the expert and the newcomer. I have only one grumble and that is that the superb photographs were not reproduced to a larger size to show the intricate detail and colours even better.

Hoverflies really took off as a special interest group some years back when Alan Stubbs and Steve Falk produced their seminal work which made identification much more possible. Roger Morris acknowledges his debt to this event but it must be said he has moved on and added to knowledge with this fine volume.

On looking at the wealth of information included, it is difficult to imagine the amount of work to produce it in an easily understood and readable form, as well as the immense amount of effort which went into the fieldwork. This covered the whole area, not just the places favoured by the surveyors. The detail of this coverage is well illustrated by the maps shown for virtually all species. These are based on two-kilometre squares and provide a very real idea of the hoverfly population of this well-favoured county. 209 of the 270 or so British hoverflies have been found here, with a further 5 doubtful records. This is rendered even more memorable when it seems that all except 11 of these have been recorded since 1980.

This volume is the fourth of a series on the county's invertebrate groups, which must serve to encourage groups in other counties to have a go. It is vital that we find out more about our invertebrates and spread the knowledge to the general public if we are to retain the species in the future. A volume such as this carries out these aims admirably in its wide coverage of the subject, clear writing without more jargon than is strictly necessary, and excellent, eye-catching illustrations.

Roger Morris has devoted 13 years to the life of hoverflies in Surrey, as well as acting in a national capacity running the National Hoverfly Recording Scheme. The information gained is presented in clear form in the book and involved over 30,000 records. It includes sections on Surrey, its soils, geology, vegetation and important sites, all illustrated with easily-understood maps. There is an introduction to hoverflies, their structure, biology and conservation. Then comes the main body of the book with its species-by-species coverage of: number of records; Surrey and national status; flight times; peaks; followed by comments on the species, its associations, locations and type of habitat in the country, flowers visited, records; tetrad distribution map.

One of the interesting developments has been the change from pure recording to a much more comprehensive look at the life of the various species. The most noticeable here is the inclusion of much data on which flowers are visited by the hoverflies.

This book is a great effort and it can only be hoped that the recording continues in this disciplined manner and in due course an up-dated and expanded version will be produced. It is to be recommended to anyone who is interested in hoverflies. I hope that other counties will be moved to produce such studies in the same methodical detail.

Robin Williams
EDITORIAL

INSTRUCTIONS TO AUTHORS

It has been some years since "Instructions to authors" have been given and this issue presents (inside back cover) an updated version. Some particular changes have been discussed at Council. A short Abstract is now required for main articles. Perhaps a more fundamental change is to request that journal titles in the references are given in full. There has been no update of the "World List of abbreviations" for many years and none appears to be in preparation. (It is also a work probably few have access to.) At the same time there has been a wide variety of new journals without agreed abbreviations. Even agreed abbreviated versions were rarely followed anyway! Many Journals have adopted the use of the full titles and an increasing number of articles are submitted in this way. There were some misgivings that full titles would lead to longer papers and waste of space. A detailed analysis of the articles published in Volume 11 of the British Journal of Entomology and Natural History and the extra space needed for full titles showed that very few extra lines would be needed. The majority of these extra lines would be accommodated within the present page layout (i.e. there was already a little space on the same page). I hope that prospective authors will not find it too difficult to include the full titles of Journals. I should be able to assist with any that might cause problems.

SOCIETY'S WEBSITE
http://www.benhs.org.uk

I hope that members with internet access have checked what is available at the new website address (transferred from its earlier site). Many may just wish to check Society details and news but it is also just the starting point for investigating the astonishing amount of entomological information that is now available. One site that might be looked at is 'Gordon's Entomological Home Page' (www.insect.world.com). There you will find over 200 separate files dealing with a huge diversity of topics in great detail and with useful bibliographies. There are now also some sites covering online catalogues to collections and even those listing humorous scientific names (http://www.best.com/~atta/taxonomy.html). Something for everyone in fact and with local call lines at around £2 an hour cheaper than some other pastimes!

ARTICLES STILL REQUIRED

As members will have noticed the last issue of Volume 11 combined parts 3 and 4. This was an attempt to catch up and provide a better schedule for issues in 1999. It was also a response to the lack of articles under consideration for a time last year. I am pleased to say that a number of articles has been submitted in the past months and the next issue is almost ready for typesetting. However, there is a continued need for articles, short communications and also field meetings reports. Perhaps only half of the field meetings that are organised by the Society are reported on. Reports need not be long but they do mark the event.
Instructions to Authors

Papers and short communications published in the British Journal of Entomology and Natural History are intended to reflect the interests of the membership, but manuscripts from non-members are also welcome. All aspects of invertebrate biology are covered although priority will be given to British and Palaearctic insects. Contributions dealing with conservation are welcomed.

General: Contributions should be double spaced on one side of A4 paper, with 3 cm margins either side to allow for marking up. Layout should follow Journal style for either articles or short communications. Apart from scientific names, which may be either underlined or given in italic, no other marks should be made to define the typeface.

Three copies of the text and figures are required; the additional copies may be photocopies.

Disk copies of the text are invited only upon acceptance. Guidance on format will be given as required.

Nomenclature: use the most up-to-date available. Include the Order in the title and family or subfamily where appropriate. After the first use of a specific scientific name give the author’s name, which should not be abbreviated except for Linnaeus as L. and Fabricius as Fab. Where required these should be placed in parentheses. This should apply not only to insect names but to the names of plants, non-insect invertebrates and other animals.

Abstract: A short abstract should be provided describing the nature of the results.

Figures and Tables: Line figures and half tones are accepted. Size of lettering, thickness of lines and density of shading, stippling and hatching must take into account likely reduction to fit into the Journal page size. Colour illustrations may be accepted where they add to the text: please contact the Editor. In the text use the abbreviations Fig. e.g. Fig. 2: and Figs e.g. Figs 3–6.

Tables should be prepared on separate sheets; avoid vertical lines, use horizontal lines sparingly. Legends for figures and tables should be given on a separate sheet.

References: In the text, references should be given as author and date (e.g. Allan, 1947): multiple references should be given in date order; where there are more than three authors they should be cited e.g. Jones et al., 1996. References should be given in alphabetical order at the end of the article. Journal titles should be given in full.

Examples:


Offprints: Authors of main articles receive 25 free offprints taken directly from the Journal. These may contain other matters such as short communications or book reviews used as ‘fillers’. Extra copies may be ordered when proofs are returned.

Whilst all reasonable care is taken of manuscripts and other material, neither the Editor nor the Society can accept responsibility for any loss or damage.
ARTICLES
1 The Aculeate wasps and bees (Hymenoptera: Aculeata) of the Ainsdale-Formby sand dunes on the Lancashire coast compared with other northern sites. M. E. ARCHER

11 Ophiomyia gnaphali Hering (Diptera: Agromyzidae) in Antennaria dioica in Scotland. K. P. BLAND

13 Nest desertion by blackbirds following defoliation of an ash tree by sawfly larvae. R. A. CHEKE & N. D. SPRINGATE

17 Observations on rearing Luffia spp. (Lepidoptera: Psychidae) under controlled environmental conditions, with taxonomic notes. I. SIMS

SHORT COMMUNICATIONS
16 Observations of some uncommon dung beetles. J. DENTON

25 Crossocerus vagabundus (Panzer) (Hymenoptera: Sphecidae) in Wales. P. M. PAVETT

29 Rearing Dahlia triquetrella (Hübner) (Lepidoptera: Psychidae). I. SIMS

33 Pleurophorus caesus (Creutzer) (Col.: Scarabaeidae: Psammobiini) imported into Cambridgeshire. B. C. EVERSHAM

40 Agrilus sinuatus (Olivier) (Col.: Buprestidae) new to Wales. K. N. A. ALEXANDER

40 Hypatus quercinus (Quensel) (Col.: Melandryidae) new to Gloucestershire. K. N. A. ALEXANDER

PROCEEDINGS AND TRANSACTIONS
33 BENHS Indoor Meetings: April-October 1998

41 BENHS Field Meeting Reports

REPORTS AND REQUESTS
26 Annual UK Dipterists Meeting, 14–15 November 1998, National Museums and Galleries of Wales, Cardiff. D. CLEMENTS

31 Call for assistance with a new survey of the social wasps of Britain and Ireland for 1999/2000

56 Editorial

BOOK REVIEWS
52 Aquatic insects of North Europe—a taxonomic handbook: Vol. 2 ed by A Nilsson. D. CLEMENTS

53 Checkered Beetles by R. Gerstmeier. B. LEVEY

53 Somerset Hoverflies by E. T. & D. A. LEVEY. P. CHANDLER

55 Hoverflies of Surrey by R. K. A. MORRIS. R. WILLIAMS
BRITISH JOURNAL OF ENTOMOLOGY AND NATURAL HISTORY
BRITISH JOURNAL OF ENTOMOLOGY AND NATURAL HISTORY
Published by the British Entomological and Natural History Society
and incorporating its Proceedings and Transactions

Editor: M. Wilson, Ph.D., F.R.E.S., F.L.S. Department of Biodiversity & Systematic Biology, National Museums & Galleries of Wales, Cardiff CF1 3NP. (Tel: 01222 573263. Fax: 01222 239009) email: Mike.Wilson@nmgw.ac.uk.
Associate Editor: Richard A. Jones, B.Sc., F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ.

Editorial Committee:

D. J. L. Agassiz, M.A., Ph.D., F.R.E.S.  T. G. Howarth, B.E.M., F.R.E.S.
R. D. G. Barrington, B.Sc.  I. F. G. McLean, Ph.D., F.R.E.S.
P. J. Chandler, B.Sc., F.R.E.S.  M. J. Simmons, M.Sc.
P. J. Hodge  B. K. West, B.Ed.

British Journal of Entomology and Natural History is published by the British Entomological and Natural History Society, Dinton Pastures Country Park, Davis Street, Hurst, Reading, Berkshire RG10 0TH, UK. Tel: 01189-321402. The Journal is distributed free to BENHS members.

© 1999 British Entomological and Natural History Society.

Typeset by Dobbie Typesetting Limited, Tavistock, Devon.
Printed in England by Henry Ling Ltd, Dorchester, Dorset.

BRITISH ENTOMOLOGICAL AND NATURAL HISTORY SOCIETY
Registered charity number: 213149

Meetings of the Society are held regularly in London, at the rooms of the Royal Entomological Society, 41 Queen’s Gate, London SW7 and the well-known ANNUAL EXHIBITION is planned for Saturday 27 November 1999 at Imperial College, London SW7. Frequent Field Meetings are held at weekends in the summer. Visitors are welcome at all meetings. The current Programme Card can be had on application to the Secretary, J. Muggleton, at the address given below.

The Society maintains a library, and collections at its headquarters in Dinton Pastures, which are open to members on various advertised days each month. telephone 01189-321402 for the latest meeting news. The Society’s web site is: http://www.BENHS.org.uk

Applications for membership to the Membership Secretary: A. Godfrey, 90 Bence Lane, Darton, Barnsley, South Yorkshire S75 5DA.

Subscriptions and changes of address to the Membership Secretary: R. D. Hawkins, 30d Meadowcroft Close, Horley, Surrey RH6 9EL.

Non-arrival of the Journal, faulty copies or other problems arising from distribution of the Journal or notices to the Distribution Secretary: D. Young, 9 Marten Place, Tilehurst, Reading, Berkshire RG31 6FB.

Orders for books and back numbers of the Journal and Proceedings to the Sales Secretary: G. Boyd, 91 Fullingdale Road, Northampton NN3 2PZ. Tel: 01604 410056.

General Enquiries to the Secretary: J. Muggleton, 30 Penton Road, Staines, Middlesex TW18 2LD. Tel: 01784-464537. email: jmuggleton@compuserve.com

Cover illustration: Solitary bee, Andrena flavipes female, photo: R. Williams.

NOTE: The Editor invites submission of photographs for black and white reproduction on the front covers of the journal. The subject matter is open, with an emphasis on aesthetic value rather than scientific novelty. Submissions can be in the form of colour or black and white prints or colour transparencies.
THE TAWNY MINING BEE, *ANDRENA FULVA* (MÜLLER) (HYMENOPTERA, ANDRENNINAE), AT A SOUTH WALES FIELD SITE AND ITS ASSOCIATED ORGANISMS: HYMENOPTERA, DIPTERA, NEMATODA AND STREPSIPTERA

ROBERT J. PAXTON$^1$ & HANS POHL$^2$

$^1$Zoologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
$^2$Hessisches Landesmuseum Darmstadt, Zoologische Abteilung, Friedensplatz 1, D-64283 Darmstadt, Germany

Abstract The fossorial solitary bee *Andrena fulva* was studied at one of its nesting aggregations in Cardiff, South Wales, and rates of parasitism by its natural enemies (Hymenoptera, *Nomada panzeri*; Diptera, *Bombylius major, Leucophora obtusa*) were quantified over six years. This was done by placing nets over the previous year’s nest entrances and collecting all host bee offspring and associated organisms as they first emerged in spring, and by dissecting host bees and their associated organisms. Cleptoparasitism by the cuckoo bee *N. panzeri* averaged 18% (ie 18% of *A. fulva* offspring were replaced by a *N. panzeri* offspring). Other natural enemies were seemingly of lesser prevalence (*B. major*: 3% parasitism; *L. obtusa*: 3% cleptoparasitism). Numerical sex ratios of host and parasites did not differ from 1:1. First instar exuviae of *Stylops melittae* were positively identified within the haemocoeel of one *N. panzeri* female. This is the first report of any stage of a strepsipteran within a nomadiine bee. However, there was no evidence of *S. melittae* adults in either *A. fulva* or *N. panzeri*, suggesting that both bee species were inadequate hosts for *S. melittae* at this field site in S. Wales.

INTRODUCTION

*Andrena* comprises a large genus of ground-nesting bees with a primarily Holarctic distribution (Michener, 1979). Approximately 65 species of *Andrena* are found in Britain (Fitton et al., 1978). Some of these are relatively common members of our spring fauna, though in a recent review over half of the British *Andrena* species were considered scarce or threatened (Falk, 1991). One member of the genus, *Andrena fulva* (Müller) (= *Andrena armata* (Gmelin)) (Hymenoptera, Andreninae), a harbinger of spring, may nest in dense aggregations in lawns of city parks and gardens in England and Wales (an aggregation existed up to the 1990s immediately in front of the Natural History Museum, London) as well as in Central Europe (e.g. Klausnitzer, 1976; Gusenleitner, 1985). A nesting female produces a characteristic miniature ‘volcano’ of soil, a tumulus, above its nest entrance (Fig. 1). Its nesting habits and locations, along with its deep red dorsal covering of hair, mean that *A. fulva* is commonly encountered and recognized. Bees and their nests are known to host a wide range of associated insects, particularly from the orders Diptera, Coleoptera and Hymenoptera, some parasitic and others commensal (e.g. Batra, 1965: Paxton et al., 1996). Yet, despite the abundance and accessibility to observation of *A. fulva*, surprisingly little has been reported on its biology and associated organisms (cf. Gusenleitner, 1985). It is known to be the sole host of the rare cleptoparasitic bee *Nomada signata* Jurine (Hymenoptera, Anthophorinae) (Westrich, 1989) and to be one of several hosts of

Strepsiptera comprise an order of 550 plus described species that are entomophagous endoparasites, attacking members of the following taxa: Zygentoma, Mantodea, Blattodea, Ensifera, Caelifera, Sternorrhyncha, Auchenorrhyncha, Heteroptera, Hymenoptera, and Diptera (Kinzelbach, 1978; Kathirithamby, 1989). Though they have a worldwide distribution and have for long attracted the attention of entomologists, they remain an understudied and enigmatic group. Their sexual dimorphism is extreme. The winged, short-lived males have a bizarre appearance whilst females are larviform and neotenic, most species remaining embedded within the abdomen or gaster of their hosts. A strepsipteran larva has a planidial primary larval stage that subsequently develops as an internal parasite of the juvenile stages of a host (Kinzelbach, 1978; Kathirithamby, 1989). Species identification, particularly of females, is difficult. Even the taxonomic position of the order is unclear, and has been debated since its erection by Kirby in 1813. The group was earlier considered to be related to, even a part of, the Coleoptera (Crowson, 1981; Lawrence & Newton, 1995). Kristensen (1991) suggested that the Strepsiptera are not members of the Endopterygota; he placed them as “Neoptera incertae sedis”. Molecular phylogenetic analyses have more recently suggested that the Strepsiptera and Diptera are sister clades and therefore probably more closely related (Chalwatzis et al., 1996; Whiting et al., 1997).
Members of the stylopid genus *Stylops* are parasites of bees of the genus *Andrena* (Kinzeltbach, 1978). Though *Stylops* are only sporadically encountered, they can be locally common, and have been implicated in the demise of nesting aggregations of their *Andrena* hosts (Theobald, 1892). Given the difficulties of stylopid species identification, little is known of their host specificity, though it is clear that some *Stylops* species can parasitize more than one *Andrena* species (Bohart, 1936; Kinzelbach, 1978; Pohl & Melber, 1996). Differences in the proportions of the female cephalothoraces, in the shape of the aedeagi of the males, and in the first instar larvae indicate that *S. melitae* from the Western Palaearctic is not a homogenous species (Kinzeltbach, 1978; Borchert, 1963; Pohl, 1998), though the precise species status of morphologically disparate specimens is not clear. For this reason, we follow Kinzelbach (1978), who synonymized all described *Stylops* species from the Western Palaearctic.

Our study was designed to document the organisms associated with *A. fulva* at one of its nesting aggregations in the suburbs of Cardiff, Glamorgan, S. Wales, and to quantify rates of parasitism of its natural enemies. During the study, first instar larval stages of *Stylops melitae* Kirby 1802 (Strepsiptera, Stylopidae) were encountered in *N. panzeri*, a cleptoparasite of *A. fulva*; this is the first report of any stage of a *Stylops* found within a nomadine bee.

**Material and methods**

*A. fulva* nests are often aggregated in a spatially discrete area of apparently suitable ground and, though the species is univoltine, with adults living but a few weeks in spring, aggregations persist over many years (Gusenleitner, 1985). *Andrena fulva* was studied for six consecutive years (1988–1993) at one such aggregation in Cardiff (field site 'Heol Don', ST149797).

The life cycle of *A. fulva* is typical of other vernal *Andrena* species; adults overwinter underground within their natal cells then emerge in the following spring, males to mate and females to provision their own offspring with self-collected pollen and nectar (Westrich, 1989). Each female constructs her own brood cells at the end of her own self-dug tunnel into the ground. Bees were collected as they first emerged from their natal cells in spring using cages of fine nylon netting (emergence traps) placed over the entrances of the previous year’s nests (Fig. 2). Offspring generally first emerge in spring through their natal tunnel rather than excavating a new gallery from their natal cell to the soil surface.

Emergence traps were put out over individual nests in spring, well before the emergence of any bees, and they were examined one or more times per day throughout the emergence and flight period. All host bees and any associated organisms emerging from *A. fulva* nests into emergence traps were recorded and either released immediately or returned to the laboratory for further study. Emergence trap data provide one means of quantifying rates of parasitism for those brood parasites that have a life cycle and spring emergence behaviour similar to those of their host. Little is known of the life cycle of some of the Diptera associated with *A. fulva* at Heol Don and their mode of egress from host cells and nests in spring. Therefore the use of emergence traps may give only an approximate estimate of the importance of these organisms as putative parasites of *A. fulva*.

All emerging bees were examined visually for the presence of Strepsiptera protruding through their gasters, namely female cephalothoraces or male puparia. Additionally, some males and females of both *A. fulva* and *N. panzeri* were dissected under insect saline and their gastric tissues examined with the aid of a binocular microscope (× 40 magnification) for the presence of internal parasites, including
Fig. 2. Cross-sectional view of an *Andrena fulva* nest in spring with emergence trap *in situ* to collect all emerging offspring and associated organisms.

Strepsiptera. Other adults of *A. fulva* and *N. panzeri* were collected from Heol Don after emergence, visually inspected, and then dissected and also examined for parasites.

**RESULTS AND DISCUSSION**

**The host bee, *Andrena fulva***

A total of 402 *A. fulva* was collected from emergence traps across the six years of their use at Heol Don, with a numerical sex ratio not significantly different from 1:1 ($\chi^2 = 0.020$, df = 1, n.s.; Table 1). Generally, a non-biased sex investment ratio is

<table>
<thead>
<tr>
<th>species</th>
<th>role</th>
<th>number of adults emerging</th>
<th>% parasitism</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Andrena fulva</em></td>
<td>host bee</td>
<td>203</td>
<td>199</td>
</tr>
<tr>
<td><em>Nomada panzeri</em></td>
<td>cleptoparasitic bee</td>
<td>44</td>
<td>51</td>
</tr>
<tr>
<td><em>Bombylus major</em></td>
<td>parasitic fly</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td><em>Leucophora obtusa</em></td>
<td>cleptoparasitic fly</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td><em>Brachicoma devia</em></td>
<td>? parasitic fly</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td><em>Fannia hamata</em></td>
<td>? parasitic fly</td>
<td>–</td>
<td>1</td>
</tr>
</tbody>
</table>
expected in solitary insects such as *A. fulva*, though the sex ratio varies from male-biased through to female-biased in other solitary bees (Crozier & Pamilo, 1996).

The cuckoo bee, *Nomada panzeri*

The cuckoo bee *N. panzeri* (Fig. 3) was abundant at Heol Don, where *A. fulva* represented its major host. It was often seen to enter burrows of *A. fulva*. *Nomada signata*, though found elsewhere in Cardiff (RJP, pers. obs.), was never encountered at Heol Don. Like its host, *N. panzeri* is univoltine and overwinters as an adult, ready to emerge in the following spring in the same fashion as its host, through the host mother’s tunnel entrance. In addition to *A. fulva*, 95 *N. panzeri* were collected from emergence traps; the numerical sex ratio of the cuckoo bee at emergence was also not significantly different from 1:1 ($\chi^2 = 0.260$, df = 1, n.s., Table 1).

One or more *Nomada* females lay eggs within host cells, only one of which survives to consume the host egg or larva and the provisions of pollen and nectar which its host mother had stored in its cell (Westrich, 1989). Thus one, and only one, *Nomada* offspring can develop within a host cell, always replacing the host offspring (Rozen, 1991). Assuming one individual of all other parasites collected in the emergence traps likewise replaced one host offspring, parasitism of *A. fulva* brood cells by *N. panzeri* can be calculated to have averaged out at 17.9% across the six years of study.

![Fig. 3. A *Nomada panzeri* female (wing length circa 8 mm), a common cleptoparasitic bee of *Andrena fulva* at Heol Don, sits ominously over a tunnel of its host. Photo: RJP.](image-url)
Though a well known cleptoparasite of *A. fulva* and other members of the genus *Andrena* (Richards, 1946), the rate of parasitism by *N. panzeri* has not previously been quantified. Clearly, cleptoparasitism by *N. panzeri* represents a considerable cost to its host, *A. fulva*, at Heol Don.

**Dipteran associates**

Female bee flies, *Bombylius major* Linnaeus (Diptera, Bombyliidae), were occasionally observed over the Heol Don nesting aggregation, hovering 5–15 cm above *A. fulva* nest entrances and flicking dust-covered eggs towards the ground with a bobbing motion at the apex of the abdomen. Such oviposition behaviour is typical of bee flies (e.g. Andrietti et al., 1997; Stubbs, 1997), whose larvae (planidia) crawl to underground host bee cells where they consume host larvae or prepupae (Bohart et al., 1960). *Bombylius major* is thought to be a parasite of numerous fossorial bee species (Askew, 1971). Empty exuviae of *B. major* were often found protruding above the soil surface within the nesting aggregation at Heol Don, suggesting that their owners had parasitised *A. fulva* cells beneath. Excavation of one *A. fulva* nest at Heol Don revealed two larvae of *B. major* within host cells, thus confirming this bee fly as a parasite of *A. fulva*. Interestingly, both bee flies required two years to reach adulthood, suggesting they may have a two- or multi-year life cycle, as also seems to be the case for *B. major* parasitizing *Andrena scotica* Perkins 1916 in Sweden (Paxton et al., 1996).

Estimating the rate of parasitism by *B. major* of *A. fulva* has three complications. Firstly, it is not known whether just one host bee larva/prepupa suffices for the development of a bee fly or whether several are required (see Batra, 1965). Secondly, bee fly larvae make their exit from subterranean host cells not through the host mother’s tunnel but more likely by burrowing vertically upwards through the soil immediately above a host cell using large proximal and distal spines (e.g. Bohart et al., 1960). Thirdly, as suggested above, *B. major* most likely has a multi-year life cycle, a feature which may be common in temperate bombyliids (Bohart et al., 1960). They are therefore unlikely to be captured within emergence traps placed over the previous year’s host nests. The 3.0% parasitism of *A. fulva* offspring by *B. major* (Table 1) is therefore probably a large underestimate. Other bombyliids are considered to inflict greater brood mortality on their host bees (e.g. at least 5.8% for a halictid bee, Packer, 1988). The numerical sex ratio of *B. major* at emergence was not significantly different from 1:1 ($\chi^2 = 0.168$, df = 1, n.s.).

The satellite fly *Leucophora obtusa* (Zetterstedt) (Diptera: Anthomyiidae) was often encountered around the nesting aggregation of *A. fulva* at Heol Don, and it has been previously recorded following *A. fulva* in Britain (Copeman, 1921; described therein as *Hannomyia* (Hylephila) unilineata Zett.). At Heol Don, a female satellite fly would pursue a female *A. fulva* returning to its nest carrying pollen provisions, ‘shadowing’ the host bee in flight by a distance of approximately 5–10 cm until the host entered its nest. *Leucophora obtusa* then followed one of two approaches to gain access to the bee’s nest and, presumably, to oviposit within it. Either it would immediately follow the host bee into its nest (Fig. 4), presumably to inspect the nest’s contents, reverse out of the nest, then re-enter the nest in reverse, presumably to oviposit. Alternatively, it would sit motionless at 2–6 cm distance from the host nest, head pointed at its entrance. After approximately 20–30 minutes, the host bee usually re-emerged and flew away on another pollen or nectar provisioning flight, whereupon the satellite fly ran up to the host nest, inspected it and oviposited within it as described above.
Fig. 4. A female of the anthomyiid satellite fly *Leucophora obtusa* (wing length circa 5 mm) enters head first a tunnel of its host, *Andrena fulva*, at Heol Don, possibly to inspect its contents. Photo: RJP (with permission, *Entomologisk Tidskrift*).

Though other *Leucophora* species are known to ‘shadow’ other presumed host bee or wasp species, there is little information on their oviposition strategies with which to compare these observations of *L. obtusa* (see Paxton et al., 1996). Certainly *L. obtusa* has been reported to parasitise several *Andrena* species (Hennig, 1976).

Satellite fly larvae eat the pollen mass with which host bee larvae have been provisioned (Hennig, 1976); they are cleptoparasites. *Leucophora obtusa* offspring probably emerge from overwintering through their host’s tunnel and collect in emergence traps. Assuming *L. obtusa* has the same life cycle as that of *A. fulva*, its rate of parasitism was low at Heol Don, at an estimated 3.0% (Table 1). It is likely that more than one *L. obtusa* could have developed on the provision mass of one host bee cell (see Knerer & Atwood, 1967) and therefore the estimate of 3.0% may itself be an overestimate. For other bee species, *Leucophora* cleptoparasitism has been shown to be higher (e.g. 7.2% for one population of halictid bees in the USA, Eickwort et al., 1996). The numerical sex ratio of *L. obtusa* at emergence was not significantly different from 1:1 ($\chi^2 = 0.125$, df = 1, n.s.).

Two other fly species were collected in very low numbers from emergence traps (Table 1). *Brachicoma devia* Fallén (Diptera, Sarcophagidae) is a known parasite of bumble bee larvae (Alford, 1975). *Fannia hamata* Macquart (Diptera, Fanniidae) larvae are commensal in wasp (*Vespula* spp.) nests (Spradbery, 1973); other *Fannia* spp. larvae consume detritus in wasp and bumble bee nests (Spradbery, 1973; Alford, 1975). It is not clear whether these irregular associates of *A. fulva* nests were indeed parasites of the bee’s brood.
Nematoda

Dissection of 159 female and 9 male A. fulva revealed 3 mermithid nematodes, one in each of three female bees. Mermithids are generalist parasites of soil-dwelling insects and have been previously recorded as parasites of other fossorial bees (Batra, 1965). No other organisms, such as diplogasterid nematodes (Giblin-Davis et al., 1990; Erteld, 1995), were recorded in association with A. fulva.

Strepsiptera

All bees collected from emergence traps were without external signs of stylopisation. An additional 91 female and 73 male A. fulva and an additional 10 female and 11 male N. panzeri, collected as free-flying adults from around Heol Don, showed no external signs of stylopisation. During casual observation, other adults of A. fulva and N. panzeri were never seen with external signs of stylopids at Heol Don across the six years of study.

Dissection of 13 female and 6 male N. panzeri revealed 2–30 dark brown spheres approximately 1 mm³ in diameter within the gastric haemocoels of three of the females, each of which had been collected from Heol Don as a free-flying adult. Spheres were brittle and opaque so their contents could not be determined. Careful inspection by microscopy (× 400 magnification) of brown flecks in the adipose tissue of one of the females containing dark spheres revealed the exuviae of two first instar larvae of Stylops melittae (Fig. 5), each approximately 0.23 mm in body length, and lacking any internal structures.

Only first instar exuviae of strepsipterans can be found in hosts because the second instar larva remains in its exuvia (Kathirithamby, 1989; H.P. pers. obs.). The encapsulation and melanisation of juvenile stage parasites by host insects is a well characterized immune response (Kraaijeveld & van Alphen, 1994). We hypothesize that the dark spheres that were found within N. panzeri haemocoels may represent encapsulated stylopids.

Though there are several cases of errant first instar larvae of Strepsiptera been found in non-specific hosts (e.g. in a first instar larva in an aphid, Prior, 1976; or in a phlebotomid, Rageau, 1951), this is the first report of any stage of a Stylops having been found inside an insect other than an Andrena host. Given the small size of stylopid first instar larval exuviae and their location, embedded within gastric adipose tissue, it may be the case that stylopids in other dissected bees (A. fulva: 159 females, 9 males; N. panzeri: 10 other females, 9 males) were overlooked in this study.

How is it that exuviae of stylopid first instar larvae were to be found inside N. panzeri adults? Primary larvae of Stylops are deposited onto flowers as host Andrena females, bearing a gravid Stylops female within their gasters, walk lethargically across blossoms (Linsley & MacSwain, 1957). Stylops larvae are assumed to climb onto other bees that subsequently visit the same flowers and are transported by them, possibly within the honey crop (Linsley & MacSwain, 1957; Batra, 1965). If the vector of the Stylops is a host female then, when the host bee is back at its nest, Stylops larvae climb onto or are deposited onto host provisions and subsequently enter the host egg or first instar larva to continue their own development (Linsley & MacSwain, 1957; Kathirithamby, 1989). For S. melittae to have been found within the haemocoelic tissue of N. panzeri adults implies that the stylopid first instar larvae must have entered a N. panzeri larva, presumably soon after it had itself consumed the original A. fulva egg or larva within a brood cell.
Fig. 5. An empty exuvia of a *Stylops melittae* first instar larva within adipose tissue of an adult *Nomada panzeri*. Total length of exuvial cavity: 0.23 mm. The head capsule has become partially detached from the rest of the exuvia. Photo: HP.

Each *N. panzeri* carrying dark spheres, including the individual in which *S. melittae* first instar exuviae were positively identified, contained spermatozoa in its spermatheca and mature oocytes in its ovarioles, suggesting that all were reproductively active. Host *Andrena* bees containing mature *Stylops* females in their gasters are effectively sterile, mating but not producing mature oocytes nor provisioning cells within a nest (Smith & Hamm, 1914; Linsley & MacSwain, 1957). It appears that *N. panzeri* was an inadequate host for *S. melittae*.

British *A. fulva* have occasionally been recorded as having been successfully stylopided by *S. melittae* (Perkins, 1892, 1918a,b; Kinzelbach, 1978). In Germany, *A. fulva* is also an often reported host of *S. melittae* (Ulrich, 1956; Borchert, 1963; Saure, 1994; Kuhlmann, 1998). Within Berlin, there is one supposed ‘host race’ of *S. melittae* which parasites only *Andrena vaga* Panzer (Borchert, 1963) despite the presence of *A. fulva* at the same location. At our Welsh field site, *S. melittae* parasitizes *A. scotica*, where hosts infected with female *S. melittae* visit the same blossoms as *A. fulva* females. That there was no evidence of *Stylops* imagines in *A. fulva* at Heol Don despite the existence of *S. melittae* within its cuckoo bee and in the local environment suggests that *A. fulva*, too, may be an inadequate host for this putative ‘host race’ of *S. melittae* at this field site. A considerable step forward in the systematics of *Stylops* species can only be made with greater series of males and first instar larvae derived from different host bees.

**ACKNOWLEDGEMENTS**

Many thanks go to the Gillard Family for their generosity, encouragement and permission to work in their garden, to Dr John Deeming (National Museum of Wales, Cardiff) for the identification of flies and enthusiasm over matters dipteran, to Profs. Robert Pickard and Mike Claridge (Cardiff University) for facilities and
support, to Prof. Kinzelbach (University of Rostock) for information about Strepsiptera, and to Dr David Hunt (CAB Institute of Parasitology) for identification of mermithid nematodes. We also thank the referee and editor for comments on the manuscript.

REFERENCES


SHORT COMMUNICATION

Aggregation behaviour in Philonthus cognatus Stephens (Col.: Staphylinidae), at Burnt Wood, Staffordshire—On the morning of 3 and 4. ix.1998 whilst undertaking a survey of the epigaeal beetle fauna at Burnt Wood, Staffordshire (SJ736534), I observed a mass aggregation of beetles, Philonthus cognatus (Col.: Staphylinidae), on the low vegetation adjacent to one of the rides bordering an area of coniferous plantation woodland (Pinus sp.). Walking a 30 m transect along the ride I recorded 616 of what appeared to be, and later proved to be, individuals of the same species of staphylinid beetle at rest on low vegetation. They were aggregated at a height of no more than 40 cm, particularly on Rubus fruticosus, Dryopteris affinis and the low sward of mixed common grasses, with some individual pieces of vegetation yielding between 40–50 individuals.

Even the slightest contact with the vegetation initiated a mass escape response whereby all the beetles spontaneously dropped to the ground amongst the dense vegetation. Adding these escapees to the recorded figure would produce an estimate of numbers in excess of one thousand along this transect. This aggregation behaviour was also observed at two other locations within the reserve, one on the opposite side of the ride, and one on an adjoining ride, giving an overall estimate in excess of 2,500 individuals. These figures were surprising as in the previous three months, whilst pitfall trapping a number of areas within the reserve, the overall total of carabid, and staphylinid beetles trapped had numbered less than 500 individuals.

Aggregation behaviour has been observed in other staphylinid species on the continent, particularly in Stenus spp., with occurrences also recorded for some Aleocharinae and Omaliinae (Lecoq, 1991, 1993; Orousset, 1993). Agonum dorsale Pontoppidan (Col.: Carabidae) have also been observed in aggregations, overwintering in the base of hedgerows in the south of England (N. Sotherton, pers. comm.), and although as yet there is no positive evidence as to why this occurs, it is possible that an aggregation pheromone is responsible for initiating this behaviour. However, this did not appear to be a typical overwintering aggregation, and the lack of physical contact between individuals suggests that this was not mating behaviour either. P. cognatus are however voracious predators of aphid species (Dennis & Wratten, 1991) and therefore it is possible that this aggregation is linked to prey searching behaviour, although there is as yet no evidence to support this hypothesis, leaving this behaviour, to date, unexplained. Thanks to Jonathan Webb of the Staffordshire Wildlife Trust for his assistance in confirming the beetle determination.—PHILIP J. SMITH, 437 Stone Road, Trentham, Stoke-on-Trent ST4 8NG & MARK R. WEBB, Biology Division, School of Sciences, Staffordshire University, College Road, Stoke-on-Trent ST4 2DE.

REFERENCES


THOMAS VERNON WOLLASTON AND THE MADEIRAN BUTTERFLY FAUNA—A RE-APPRAISAL

MICHAEL A. SALMON
Avon Lodge, Woodgreen, New Forest, Hampshire SP6 2AU.

ANDREW WAKEHAM-DAWSON
Mill Laine Farm, Offham, Lewes, East Sussex BN7 3QB.

Abstract. In 1847, the British entomologist T. V. Wollaston visited Madeira and commenced a study of the invertebrate fauna of that island. He returned several times and his work culminated in the publication of *Insecta Maderensis* in 1854. Two years later he published *On the Variation of Species with especial reference to the Insects*, a text which clearly anticipated *On the Origin of Species by means of Natural Selection* by his friend Charles Darwin. Although Wollaston made only a small collection of Madeiran butterflies, he is remembered by the endemic subspecies of *Pieris brassicae* L. that bears his name. The present authors visited Madeira on a number of occasions during the period May 1997–August 1998 to survey Lepidoptera in the Parque Ecológico do Funchal, part of a long-term project to provide information for a field guide to the Lepidoptera of the park. This paper is an extension of that survey and presents data on all the Madeiran butterflies.

INTRODUCTION

‘The island being resorted to by so many invalids,’ wrote Professor Henry Moseley, on visiting Madeira in 1872 (Moseley, 1880), ‘the cemetery forms a conspicuous feature in the scenery.’ With this statement the scene is set, for almost 150 years ago the young T. V. Wollaston (1822–1878) Fig. 1, an ailing consumptive of 25 summers, first set sail for Madeira in the hope that constant sunlight and an equable climate might result in a cure for his tuberculosis. However, the truth is that few such individuals survived long. In travelling south, Wollaston was merely following that long line of Victorian invalids despatched overseas by doctors who were, themselves, unable to offer any effective treatment. Indeed, there was little hope of a cure, for the days of definitive anti-tuberculous medication were yet to come, but Wollaston, initially at least, did rather well. He was so taken by the beauty of the island, the friendliness of its inhabitants and the startling mountain scenery, that he returned on a number of occasions. While there he seized every opportunity to further his interest in entomology, and three prolonged visits to that island, undertaken at different periods of the year, supplied the basis for the most important of his written works—the monumental *Insecta Maderensis* (1854). This quarto volume of 677 pages was illustrated with exquisite coloured drawings by Professor J. O. Westwood FRS, and describes Madeiran insects in minute detail together with other works (e.g. Wollaston, 1858) (Fig. 2).

All that happened a very long time ago, and since then a not inconsiderable number of other naturalists have also made their way to the North Atlantic Islands of Macaronesia and some of them have studied the butterfly fauna of Madeira. Indeed, for a country with less than 20 butterfly species Madeira would appear to have received a great deal of attention. Many of these later authors, however, wrote little more about the entomology of Madeira and its neighbouring islands, Porto Santo and the Ilhas do Desertas, than short annotated lists of the species recorded,
and as far as the Coleoptera were concerned, such papers have often turned out to be no more than extensions of Wollaston’s original works. So, was Wollaston an important figure and, if so, what did he actually achieve?

WOLLASTON’S EARLY LIFE

Thomas Vernon Wollaston was born on 9 March, 1822, at Scotter, Lincolnshire, the youngest son of Major Wollaston of Shenton Hall, Nuneaton. He was directly related to both William Wollaston (1659–1724), author of the Religion of Nature Delineated, and Dr William Hyde Wollaston FRS (1766–1828), the celebrated chemist who first discovered the metallic elements rhodium and palladium. Educated at the Grammar School, Bury St Edmunds, and Jesus College, Cambridge, he took his BA in 1845, and his MA in 1849. It was while at Cambridge that Wollaston first developed an interest in entomology, stimulated by the teaching and example of his mentors, Professor C. C. Babington FRS and, in particular, the Revd Hamlet Clark (1823–1867) (Fig. 3), a fellow undergraduate, who was elected Vice President of the Entomological Society of London in 1864. During his early years at Cambridge, Wollaston, with Hamlet Clark and the Revd J. F. Dawson organized collecting trips to the fens and Suffolk breckland. In 1843, Wollaston published his first entomological paper—a short account of the beetles found near Launceston—and it appears that from then onwards he was to devote most of his life to a continuous study of entomology and natural history. Under the guidance of Professor Babington and Hamlet Clark, Wollaston was soon elected a Fellow of the Cambridge Philosophical Society and then, in 1847, to Fellowship of the Linnean Society. Although his main interest was in the Coleoptera, Wollaston studied many other orders of insects as well as making studies of the botany of Madeira and its land shells. At least two species of Lepidoptera are named after him. There is little doubt that Wollaston’s work on the North Atlantic Islands did much to stimulate others who were interested in the various endemic forms that inhabited them. What he achieved was to make people think.

During his undergraduate days, Wollaston was opposed to the theory of evolution but later, as a friend of Charles Darwin, he came to accept that some forms which could hardly be regarded otherwise than as individual species might have a recognizable derivative origin. Wollaston admired Darwin for his accurate field observations, but his own observations convinced him that there was no evidence that one species ever evolved into another. He concluded that species were separately created according to some divine plan, the details of which could be elucidated by the study of natural history. He insisted that his thesis stemmed not from religious belief but from observation and application of the inductive scientific method (Cook, 1995). In 1856, he published On the Variation of Species with especial reference to the Insects, a text which clearly anticipated Darwin’s The Origin of Species by means of Natural Selection (1859).

Wollaston dedicated the work to his friend: “Whose researches, in various parts of the world, have added so much to our knowledge of Zoological geography.” Darwin, in turn, sent him a complimentary copy of the Origin of Species. In spite of their conflicting views Wollaston and Darwin remained good friends, although the former’s criticism of The Origin of Species clearly strained the relationship. Wollaston was quite unable to accept the central theme of Darwin’s message (Anon, 1860). “A cold shuddering comes over us at what we are compelled to regard as a glorious non sequitur, and that, too, from premises which we cannot admit!” Darwin responded to this in a letter to his son William: “There was a rather fierce attack on it in Annals of
Nat. History by my friend Wollaston. . . By Jove the Book has made row enough, & I shd [sic] now like to get on quietly with my work." Although Darwin would rather not have become involved he was provoked into retaliation. In July 1860, he wrote to Professor Westwood, who was attempting to raise money to purchase Wollaston's collections of Madeiran land and freshwater shells: "I have spent so much money lately that I am not willing to subscribe for the purchase of Wollaston's collections for your Museum." (Burkhardt, et al. 1993).

In the introductions to his various works on the fauna of the Atlantic islands Wollaston put forward his own hypothesis that the endemic Coleoptera could not be satisfactorily referred to any geographical area now existing, but rather to some Atlantic region of which they were the sole representatives of modern times. This view remained unchallenged until the latter half of the present century when a number of authors, including Mayr (1969), Bush (1975 and 1982), and Cain (1984), individually addressed the twin problems of evolution and speciation. More recently, Owen and Smith (1993a), who visited the North Atlantic Islands on a number of occasions, reviewed more than 300 publications on the butterfly fauna of Macaronesia, and postulated that this fauna consisted of four elements: a.) endemic taxa related to existing ones on the neighbouring continents; b.) relict endemic descendants of an extinct Saharan fauna; c.) recent (mostly post-fourteenth century) immigrants from Europe and East Africa; d.) cosmopolitan migrants. They suggested that an unknown but substantial number of species, mainly from Laurisilva which covered much of the island of Madeira, had probably become extinct since the islands were colonized by Europeans in the fourteenth century. They were able to show that the number of species and the number of endemic forms on each of the North Atlantic Islands were positively correlated with vegetation density and negatively correlated with distance from the nearest continent.

WOLLASTON IN MADEIRA

Two years after graduation, during the autumn of 1847, Wollaston developed early symptoms of severe pulmonary disease. His doctors advised him to seek a milder climate from the harsh British winter months ahead—advice that led him to convalesce in Madeira during the winter of 1847–1848. It was here that over the next few years, in spite of appalling ill health, he took every possible opportunity to study the entomology and natural history of the island. The result was the accumulation of a massive collection of Coleoptera, Lepidoptera and other orders of insects, as well as the first scientific collection of Madeiran land shells. On his return to England, Wollaston agreed to continue convalescence but this time in the West Country. He left his elegant town house in Park Lane, London; purchased property in Devon; married the youngest daughter of a close friend; wrote a slim volume of poems—Lyra Devoniensis (1868); only to die a few years later, at the age of 57, of pulmonary haemorrhage, the consequence of tuberculosis. He was buried at Teignmouth, Devon.

Madeira was not the only island that Wollaston visited. He seemed fascinated by islands, and visited, among others, the Canaries, the Cape Verdes, St Helena and Lundy. At each place he collected assiduously, his illness permitting, and produced detailed lists of species which included many that were new to science. In St Helena he specialized in the Cossonidae (Coleoptera), collecting from that island no less than 54 separate species, and this interest ultimately led to the description of 255 new cossonid species—world-wide—which was approximately 180 more than all other coleopterists had achieved. Looking back to those far off times one is immediately struck by the strength of purpose that Wollaston showed while engaged in these
Having lost the joy of the wilds, Wollaston explored in expatriate botany around the church. But Wollaston was obviously made of stern stuff. In the preface to *Insecta Maderensia* he wrote, "In May of 1850 . . . having procured a tent, I again set sail for the island—prepared to take up my abode, during the hotter period, in districts as yet but imperfectly explored; and by applying myself in good earnest (at elevations, moreover, difficult of access except at that peculiar season), I conceived that I should be in a position, at the close of my third sojourn, to attempt a more lengthened and systematic treatise than I had at the beginning ventured to contemplate".

During the 1850s, the expatriate community in Funchal was sizeable, (averaging around 500 adults in the summer months and 700 in winter (Nash, 1990), and Wollaston found within it a number of devoted friends. One of these, John Gray, a wealthy business man and amateur coleopterist, invited him to join his yacht, the *Miranda*, for excursions to remote parts of the island, and later to the Canaries archipelago and Cape Verde Islands. Among his companions on these trips was Richard Thomas Lowe, another Cambridge man and Chaplain to the English Church in Funchal. Revd Lowe was a keen naturalist, particularly interested in botany as well as the Mollusca. Unfortunately his practice of attempting to convert expatriate parishioners to the ways of the Roman Church led him into deep waters. When news of these heretic practices came to the ears of parliament, Lord Palmerston was provoked to announce that there was a 'scandal in Madeira.' He dispatched an envoy, the Archbishop of Cape Town, to Funchal at once, hoping that mediation might put an end to these 'vile practices.' The Archbishop, however, failed in his mission and Palmerston ordered Lowe's immediate resignation, an order that Lowe just as quickly rejected. Through all this Wollaston continued to support Lowe and, together, they organized further collecting trips to remote and inaccessible parts of the island. We wonder if the Archbishop of Cape Town was persuaded to develop an interest in the natural history of Madeira.

Wollaston was totally captivated by the beauty of Madeira although, in 1854, journeys to the more central parts of the island must have been extremely difficult. Travel on horseback, tramping for hours over ill-defined rocky tracks into the evergreen Laurisilva, or attempting to land on the more remote parts of the coastline were all fraught with danger, especially to a man so physically unfit but Wollaston revelled in the challenge and readily accepted the difficulties that beset him along the way. He may well have been mindful of the words of Charles Kingsley (1819–1875), a fellow naturalist and author of *The Water Babies*—indeed, these two would appear to have had much in common. "The naturalist," wrote Kingsley, should be "strong in body; able to haul a dredge, climb a rock, turn a boulder, walk all day, uncertain where he shall eat or rest; ready to face sun and rain, wind and frost, and to eat or drink thankfully anything, however coarse or meagre . . .". On his trips, Wollaston was usually accompanied by his wife, a knowledgeable lepidopterist, and Portuguese porters who were responsible for bringing daily supplies. He was able to describe in glowing terms the joys of camping out in wildest Madeira. 'There is something amazingly luxurious in betaking oneself to Tent-life, after months of confinement and annoyance (it may be entirely,—**partially** it must be) in the heat and noise of Funchal. We are then perhaps more than ever open to the favourable impressions of an alpine existence;—and who can adequately tell the ecstasy of a first encampment on these invigorating hills! To turn out, morning after morning, in the solemn
stillness of aerial forests,—where not a sound is heard, save ever and anon a woodman’s axe in some far-off tributary ravine, or a stray bird hymning forth its matin song to the ascending sun; to feel the cool influence of the early dawn on the upward sward, and to mark the thin clouds of fleecy snow uniting gradually into a solid bank,—affording glimpses the while, as they join and separate, of the fair creation stretched out beneath; to smell the damp, cold vapour rising from the deep defiles around us, where vegetation is still rampant on primaeval rocks and new generations of trees are springing up, untouched by man, from the decaying carcases of the old ones; to listen in the still, calm evening air to the humming of the insect world (the most active tenants of these elevated tracts); and to mark, as the daylight wanes, the unnumbered orbs of night stealing one by one on to the wide arch of heaven, as brilliant as they were on the first evening of their birth;—are the lofty enjoyments, all, which the intellectual mind can grasp in these transcendent heights.’

In 1890, Mrs Wollaston presented George Baker with the greater part of her late husband’s collection of Madeiran Lepidoptera. It contained 11 butterfly species and a much larger number of moths. Wollaston’s original account (1858) consists of little more than short descriptive paragraphs, in Latin, of the various species, but Baker (1891) transcribed these, added notes of his own, and put forward his own theory that humidity of climate might be largely responsible for variation in certain species (see also Stainton, 1859).

From July 20–August 3, 1998, the authors visited Madeira under the auspices of the Madeiran scientific funding body—CITMA—to survey Lepidoptera in the Parque Ecológico do Funchal. This was part of a long-term project started in May 1997, to provide information for a field guide to the Lepidoptera of the Park, and to provide base-line information against which the effects of the attempted re-establishment of native vegetation (Laurisilva) on the butterfly fauna could be assessed (Wakeham-Dawson & Warren, 1998a). We were accompanied by entomological colleagues from the Natural History Museum (London) and the University of Warwick. The authorities of the Parque Ecológico do Funchal put the Casa do Barreiro (970 m.), one of the park houses used to accommodate visitors, at our disposal and we were able to visit most parts of the island to examine localities mentioned as specific in the literature. Although the butterflies of Madeira are well documented, a number of changes, some highly significant, have occurred during the past thirty years. It is with this in mind that we have re-examined the status of the butterfly fauna as it appeared on this visit, and in relation to Madeira’s Oceanic existence (MacArthur & Wilson, 1967).

The Funchal Ecological Park

The Parque Ecológico do Funchal was founded in 1994 as a centre for environmental education. It is situated above Funchal, the capital city of Madeira, on the southern side of the island (Fig. 4). The Park covers an area of about 10 km²; its lowest point is 500 m. above sea level and it rises to over 1800 m. near Pico de Arreiro. The range of elevation together with a number of steep gullies within the Park, allows the area to support an interesting assemblage of endemic plants and animals (Wakeham-Dawson & Warren, 1998b).

One of the main aims of the Park authorities is to fell invasive Eucalyptus and Acacia, and replace them with Laurel trees. The hope is that native Laurel forest (Laurisilva) can be re-established. Laurisilva once covered most of Madeira and is a relic of the forests that covered southern Europe in the Tertiary Period (Press & Short, 1994). From sea-level (especially on the dry south side of the island) to c. 300 m. there
Fig. 1. Thomas Vernon Wollaston (1822–78).

Fig. 2. Beetles sketched by T. V. Wollaston 1846. (Courtesy Mun. Museu Funchal).

Fig. 3. Revd Hamlet Clark (1823–67).
Fig. 4. Map of the Funchal Ecological Park (Parque Ecológico do Funchal).
was dry Laurisilva consisting of *Apollonias barbujana* (Cav.) Bornm. with *Euphorbia* spp. and Dragon trees (*Dracaena draco* (L.) L.). From 300 m. to about 1200 m.: humid Laurisilva of *Laurus azorica* (Seub.) Franco, etc., and from 1200 m. to the summit of the island: *Erica* spp. (Tree Heathers) Laurisilva. Today, the scene is rather different. The humid Laurisilva is now restricted to the north and the dry Laurisilva is now almost totally replaced by urban development or agriculture (Press & Short, 1994). The humid Laurisilva is kept wet by condensation of water from the frequent sea fogs that form over the higher regions of the island. Much of the original area of Laurisilva on Madeira has been destroyed, and the Park’s project may make a valuable contribution to the conservation of this important habitat type. According to Nash (1990) João Gonçalves Zarco, the Portuguese explorer who discovered Madeira in 1419, found the island covered with dense forest (in Portuguese, the word Madeira means wood). In order to clear the ground for the first settlement he caused fire to be put to the trees. There is a local legend that the whole of the island burned for seven years but this is probably no more than a legend.

**Check-list of the Madeiran butterflies**

(arranged in the order that they are discussed below)

*Pieris rapae* (L.) small white.

*Pieris brassicae* ssp. *wollastoni* Butler. madeiran large white. (W) Endemic subspecies.

*Gonepteryx maderensis* Felder madeiran brimstone. (W) Endemic species

*Colias crocea* (Geoffroy) clouded yellow. (W)

*Hipparchia maderensis* Baker. madeiran southern grayling. (W) Endemic species.

*Pararge xipha* Fab. madeiran speckled wood. (W) Endemic species.

*Pararge aegeria* (L.) speckled wood

*Neohipparchia statilinus* (Hufnagel) tree grayling. (US)

*Vanessa atalanta* (L.) red admiral. (W)

*Vanessa indica* ssp. *vulcania* Godart. indian red admiral. (W)

*Danais plexippus* (L.) monarch or milkweed butterfly.

*Cynthia cardui* (L.) painted lady. (W)

*Lycaena phlaeas* ssp. *phlaeoides* Staudinger. small copper. (W)

*Lampides boeticus* (L.) long-tailed blue. (W)

*Colias hyale* (L.) pale clouded yellow. (US)

*Cynthia virginiensis* (Drury). american painted lady. (US)

*Issoria lathonia* (L.). queen of spain fritillary. (W) (OS)

*Hypolimnas misippus* (L.) false plain tiger. (US)

*Danais chrysippus* (L.) plain tiger. (US)

W = specimens in the T.V.Wollaston Collection (1847–1850)

OS = occasional vagrant

US = uncertain status

*Pieris rapae* (L.)

The small white is a relatively recent addition to the Madeiran fauna. Although there is the record of a possible sighting in 1909 (Swash & Askew, 1982), it was not until December 1971 that a specimen was actually captured and not until 1974 that the species became definitely established. In July of that year a massive invasion occurred which Wolff (1975) suggested might have originated in Portugal and been driven by the prevailing Trade Wind towards Madeira. Why, Wolff asks, when similar climatic conditions must have occurred many times in the past, did sudden colonization not
were increase been north later. valley Chao Continent 95% island decline evidence Madeira. D), in (1977) the remains illustrated genitalia endemic unlikely, P. Wollaston Sm. Cabbage also 1990s, northern BR. Askew (1982), Wolff (1975) northern BR. Cabbage (Brassica oleracea L.) and Chagas (Tropaeolum majus L.) during July and August 1998. It has also been observed in Madeira laying on Coronopus didymus (L.) Sm. (Wakeham-Dawson, 1998). No named aberrations were observed.

Pieris brassicae ssp. wollastoni Butler

Since Wollaston first collected this butterfly in mid-Victorian times—and he collected a considerable series (Baker, 1891)—it has continued to decline in numbers and must now be regarded as extinct. This decline appears to be long-standing. Both Wollaston and Baker thought this subspecies was little more than a melanic variation of Pieris brassicae L., forming a natural transition between P. brassicae and the endemic Canary Island P. cheiranthi Hübner. Felder (1862), who published a list of the insects collected by scientific members of the frigate Novara, thought that this subspecies was P. cheiranthi, but Kudrna (1973), after critical examination of the genitalia of P. brassicae, cheiranthi and wollastoni, stated that there was sufficient evidence to consider wollastoni as a subspecies of P. brassicae. The male genitalia are illustrated in Fig. 5a, for comparison with illustrations by Higgins (1975).

Swash & Askew (1982) pose the question as to whether the decline in numbers of Pieris brassicae ssp. wollastoni and the increase in P. rapae might be inter-related; the decline of the former facilitating colonization by the latter, and the establishment of P. rapae possibly resulting in the final decline of P. brassicae wollastoni. This seems unlikely, however, as both taxa co-exist throughout much of Europe. It therefore remains a subject for debate. Another possibility is that a parasite arrived on the island and destroyed the P. brassicae wollastoni population. In the United Kingdom 95% of P. brassicae larvae are parasitized by the wasp Apanteles glomeratus L, and the population only survives because of the regular influx of migrants from the Continent (Cribb, 1983).

Although Martin (1941) found P. brassicae wollastoni at Santo da Serra, Oehmig (1977) at Pico Arreiro and Aguas Mensas, and Gardner & Classey (1960) at Rabacal, Chão das Feiteras and Caramujo, de Worms (1964) observed only a single specimen in 1964, at Monte, c. 700 m. above Funchal. Since then there have been only scattered sightings. Wolff (1975) reported a number of specimens in 1973 and 1974, and Swash & Askew (1982). various isolated sightings at Porto da Cruz, Ribeiro Frio, Funchal and Santa Cruz. They concluded that the only sizeable population located was in the valley leading to Fajã da Nogueira where, in July and August, several specimens were seen near the river and a few at greater altitude up to about 1000 m. Two years later, Lace & Jones (1984) reported seeing the Large White at Boca da Risco on the north coast, but Owen and Smith (1993a), who visited the island five times during the 1990s, were unable to find either adults or larvae. One of the present authors (A.W-D), in six visits to Madeira since 1997, has been no more successful. In an extensive search during July 1998 we found no evidence that this butterfly still flies on Madeira. Resident entomologists have not seen this species in recent years and have been aware of a decline in P. brassicae wollastoni that appears to have matched the increase in P. rapae (Antonio M. F. Aguiar, pers. comm.).
**Gonepteryx maderensis** Felder

This species (Plate 1, H), well known to Wollaston in the 1850s, is endemic to Madeira and formerly widely distributed and abundant. It was first described by Felder (1862) who thought it was no more than a variety of *G. cleopatra* L. Some thirty years later, Baker (1891) suggested that it formed a connecting link between the Mediterranean *Gonepteryx cleopatra* L. and *Gonepteryx cleopatra* ssp. *cleobule* from the Canaries. More recently, Kudrna (1975) has accorded both it and *cleobule* specific status. This action is supported by Brunton et al. (1996) who studied seven species of *Gonepteryx* under ultraviolet light to reveal their ultraviolet reflectance patterns. They were able to show that *G. maderensis* differed from other species in that the ultraviolet pattern on the underside of female specimens was typical of *Gonepteryx* males.

The literature suggests that over the past 25 years the madeiran cleopatra has declined steadily in numbers. Kudrna (1975) described *G. maderensis* as local and uncommon at higher elevations in mountains; Gardner & Classey (1960) thought it might be restricted to certain northern parts of the island; while Swash & Askew (1982) reported sightings at Fajã da Cedro Gordo, near Fajã da Nogueira, and the Botanical Gardens at Ribeiro Frio. Manley & Allcard (1970) found this species at an altitude of 1200 m. However, the Madeiran Cleopatra may in fact be more common than it appears, as it rarely comes down from the forest canopy. It is probably widespread but not common in March, May and July in areas of Laurisilva between 400–1000 m. In July 1998 we observed small numbers flying about the laurel forest at Chão da Ribeiro. This species was seen at Chão da Ribeiro near Seixal on the north coast in March (John Smit, pers. comm.) and again in May (W), and a female was seen ovipositing high up in the Laurisilva canopy on leaves of *Rhamnus glandulosa* Aiton on 24.vii.1998. A male was observed nectaring at *Hypochoeris radicata* L., and both sexes were observed feeding at *Agapinus praecox* Willd. flowers by the roadside near Ribeiro Frio and at several locations near the Encumeada Pass. A single male was seen in the Funchal Ecological Park on 30.vii.1998 (Table 1). This butterfly had probably flown south west from Ribeiro Frio with the prevailing wind (Duarte Câmara, pers. comm.). This is encouraging because it suggests that the species may be able to re-colonise naturally in the Park, once Laurisilva is established. The male genitalia are illustrated in Fig. 5b.

**Colias crocea** (Geoffroy)

In July and August 1998, the Clouded Yellow was second only to the Madeiran Southern Grayling in abundance. It occurred at all altitudes from sea-level up to 1800 m. and was often observed flying in the streets and gardens of Funchal. A female was observed laying single eggs on the upper surface of the leaves of *Trifolium repens* L. in shaded areas near small cabbage fields at Seixal. We also noticed that a

---

**PLATE I MADEIRAN BUTTERFLIES**

wings closed if the passing butterfly was a male or a mated female. Unmated females were pursued by several males and some pairs were observed mating in flight. Males were also observed drinking from wet mud. Oviposition was not observed. In July and August 1998, this was the most abundant butterfly on the island, with the sexes in approximately equal numbers. It was common in open grassy areas and pine woods above 1000 m. in the Park and other similar habitats across the island. It was also present in Erica-rich Laurisilva at Rabaçal below 600 m. Previously, Kudrna (1997) reported it at 1700 m. on Pico do Arieiro and at 1000 m. on Eira do Serrado, while Swash & Askew (1982) found it to be common between Pico do Arieiro and Pico Ruivo, and beside the track from Pico Ruivo to about halfway to Encumeada. They concluded that it was the most abundant butterfly at altitudes in excess of 1600 m.

**Pararge xipha** Fab.

The madeiran speckled wood (Plate 1, F & G) is endemic to Madeira. In 1891, Mrs Wollaston reported it to be 'one of the commonest species in Madeira at intermediate elevations, and wasted examples may be found throughout the winter, especially in the district above Funchal, called "the Mount."' [Monte] (Baker, 1891). It is of interest to recall that the district known as Monte was much favoured by expatriate Britons and invalids seeking homes on the island. More recently, Swash & Askew (1982) found this species to be common near Portela and in the Ribeiro Frio-Fajã do Nogueira region, but absent at low altitudes and near the coast. Although *P. xipha* is widely distributed and common above 500 m., it is most abundant in Laurisilva—and in this habitat can even be found flying when low clouds shroud the landscape in dense fog.

In July 1998 we found *P. xipha* to be abundant in the Parque Ecológico do Funchal, especially along the edge of woodlands, where it flew in company with the European speckled wood (*P. aegeria* (L.). Males were seen perching on bracken (*Pteridium aquilinum* (L.) Kuhn) fronds, or trees in the Laurisilva, waiting for females to approach. A number of males were also seen engaging in vertical spiral flights with other males intruding upon their territories. The resident male would usually return to its original perch once the intruder had been driven off. These spiral flights were similar to, but not so prolonged as those of *P. aegeria*. Females appeared extremely selective about where they would lay their eggs: flying into dark excluded places and often testing a potential food-plant with their ovipositor, but not depositing an egg. However, females were observed ovipositing in shaded areas of the Laurisilva forest on *Brachypodium sylvaticum* (Huds.) and *Poa trivialis* L. (especially dead leaves at the base of tussocks) at Fajã da Nogueira, Ribeiro Frio and Portela during July and August, 1998. One female was seen positioning a single egg on the underside of a dead fern (pteridophyte) frond above a levada (man-made watercourse). The eggs were very pale green, smooth to the naked eye, and about twice the size of *P. aegeria* ova laid on *Poa* sp. in southern England. The male genitalia are illustrated in Fig. 5c.

**Pararge aegeria** (L.).

The first Madeiran specimen of the European speckled wood was captured at Ribeiro Frio in 1976, by N. D. Riley (Higgins, 1977), since when it has become widely distributed (Plate 1, D & E) and abundant through much of the island from sea-level to about 1000 m. (Owen & Smith, 1994). It may, however, be absent from the Ilhas do Desertas and Porto Santo. In July and August, 1998, we found it to be quite common in the Parque Ecológico do Funchal, especially in wooded areas where
the scattered vegetation was interspersed by patches of dappled sunlight. It is widely distributed in gardens and Eucalyptus forest, especially below 1000 m., and it is less common in Laurisilva. A dwarf male specimen was taken in which the wingspan measured 30 mm. (average wingspan for males = 46–50 mm.). As with P. xiphius we observed males performing vertical spiral flights. Although a female was observed apparently searching for suitable egg-laying locations near clumps of Poa trivialis L., in a shaded area near a levada at Rabaçal, oviposition was not seen.

**Neohipparchia statilinus** (Hufnagel)

The tree grayling has been recorded from Madeira on one occasion. In the Zoological Museum of the University of Copenhagen there is a single specimen labelled: Madeira, Nogueira, Camara de Cargo, 1000 m., 23.viii.1974, E.Traugott-Olsen leg. (Karsholt, 1988). This was examined by Lionel Higgins who stated it to be of the form allionia (Fab.). As no other specimens have been recorded it may have been a misplaced specimen, although Karsholt suggests that the single specimen was probably a vagrant from the Iberian peninsula where the form allionia occurs (Higgins & Hargreaves, 1983).

**Vanessa atalanta** (L.)

The red admiral has probably never been a common species on Madeira. We saw no evidence of it in the Park during July and August 1998 but we did see worn specimens in the Botanical Gardens during this period. The three specimens in the Wollaston collection were taken in company with V. indica at Monte, above Funchal (Baker, 1891). More recently the species has been recorded from Pico das Pedras in April and Fajã da Nogueira during July by Swash & Askew (1982), who also found it sparingly on Deserta Grande (Ilhas do Desertas) and Porto Santo.

**Vanessa indica vulcania** Godart (= occidentalis Felder)

The Indian red admiral (Plate 1, J), which Owen & Smith (1993b) reported as well-established and common on Madeira, indeed more abundant than V. atalanta, is perhaps most often seen during April and May. It has been recorded from Machico, Santa Cruz, Santo de Serra, Porto da Cruz, Fajal and São Jorge (Swash & Askew, 1982) as well as the botanical gardens at Ribeiro Frio. We observed a single specimen at Rabaçal in July 1998. The occurrence of this butterfly on Madeira, however, constitutes an enigma.

Field (1971) showed that of five separate subspecies of V. indica, four were restricted to South or East Asia, while V. indica ssp. vulcania Godart was confined to Macaronesia in general and Madeira and the Canary Islands in particular. Why should the Macaronesian populations be separated from the other subspecies by thousands of miles? The distribution of Vanessa indica, worldwide, has been discussed in considerable detail by Leestmans (1978) and Shapiro (1992). Leestmans was able to examine 40 examples of V. indica and V. indica vulcania from the Belgian National Collection and a further 12 V. indica vulcania from his own collection. V. vulcania appeared to be phenotypically constant and Leestmans suggested that it deserved full specific status on account of significant differences in the structure of the genitalia between it and Asian V. indica.

So how did V. indica vulcania first reach Macaronesia? Three possibilities have been suggested. (1) V. indica vulcania may have evolved from specimens accidentally introduced from India by early Portuguese traders. (2) It may have migrated to
Macaronesia from Asia, although there is little evidence that this butterfly is migratory. (3) It may be a relict, now endemic to Madeira and the Canaries, from the time when Laurisilva covered much of southern Europe (Tertiary Period).

Shapiro (1992) suggests that although the traditional view has been that Portuguese traders ‘introduced’ the butterfly during the past 500 years, this is unlikely to be correct. The phenotypic characters of *V. indica vulcania* from Macaronesia are just not consistent with a relatively recent introduction from the Portuguese trading centres in southern India or Sri Lanka. From an examination of biogeography and ecology Shapiro suggests that it is not possible to rule out an autochthonous origin as a relict of the once wide-spread Tertiary broad-leaved forests preserved in Macaronesia as Laurisilva. He goes on to add, ‘The very different time scales of the two hypotheses [500 years or several million years ] suggest that genomic comparisons would allow easy discrimination between them.’ It is likely that future DNA analysis will provide a more accurate indication of this Macaronesian butterfly’s ancestry.

*V. indica vulcania* has also been recorded from the neighbouring island of Porto Santo, where a century earlier, Alfred Russel Wallace (1889) quoting Wollaston, stated that specimens invariably tended to be smaller than those found on Madeira. Manley & Allcard (1970) noted that Stichel (in Seitz, 1906) also described Madeiran specimens of this species as being smaller and darker than those from the Canary Islands, but were unable to substantiate this. It is possible therefore that Stichel was referring to specimens from Porto Santo. In the Canary Islands the foodplant is *Urtica morifolia* Poir, where it occurs abundantly as a component of the ground flora of laurel forests (Owen & Smith, 1993b). However, *U. morifolia* is an uncommon plant on Madeira (Press & Short, 1994), where Manley and Allcard (1970) state that the larvae feed on *U. dioica* L.

*Danaus plexippus* (L.)

The monarch is not uncommon in the streets of Funchal, the botanical gardens at Ribeiro Frio, and a number of areas below 1000 m. on the warmer south side of the island. Occasional specimens were seen in the Parque Ecológico do Funchal during July and August 1998 (Table 1). Owen & Smith (1989) have shown that the Monarch tends to select introduced species of *Asclepias* such as *A. curassavica* L. or *A. fruticosa* L. to lay its eggs on rather than native species. This would probably account for its being seen most frequently in Funchal gardens where these ornamental plants are grown.

*Cynthia cardui* (L.)

Most authors suggest that *C. cardui* is seen frequently on Madeira but, during July and August 1998, we observed two specimens only in the Parque Ecológico do Funchal. Antonio M. F. Aguiar (pers. comm.) has evidence that this species breeds in Madeira as well as appearing as a regular migrant.

*Lycaena phlaeas* ssp. *phlaeoides* Staudinger

The small copper is represented on Madeira by the subspecies *phlaeoides* Staudinger. The fore-wing markings are darker than in the nominotypical form, with some enlargement of the submarginal spots. In extreme examples the copper band of the hindwings is reduced in size and sometimes almost obliterated. The underside is characterized by a band of grey scaling in the outer discal area. The
small copper is common in all habitat types in the Parque Ecológico do Funchal, even at altitudes of 1500 m., where it flies in the moorland gullies. We observed it also at Rabacal in July 1998. It has also been recorded from Acada do Cedro Gordo, Balcoes, near Camacha and between Pico Ruivo and Encumeada (Swash & Askew, 1982). There is considerable variation in Madeiran specimens. In 1891, Baker recorded pale specimens, while Cockerell (1923) commented that a specimen from Porto da Cruz was "ordinary phlaeas, not dark at all." In July 1998 we captured a number of extremely dark examples—undoubtedly L. phlaeas ssp. philaeoides—in the Parque Ecológico do Funchal which included the following named forms:

f. caeruleopunctata Ruhl, several specimens of this common aberration were observed, although none of these was extreme (Plate 1, I). In no case were there more than four pale blue submarginal spots to the hindwings.

f. obsoleta Tutt, a single specimen was observed in which the copper band on the hindwings was absent.

f. radiata Tutt, a single specimen in which the copper marginal band on the hindwings was divided into wedge-shaped rays.

Lampides boeticus (L.)

The long-tailed blue appears to be common and widely distributed on Madeira up to an altitude of about 1200 m. Females were observed laying on Genista tenera (Jacq. ex Murray) near Seixal; Lupinus albus L. (grown as a crop) near Encumeada; Lotus pedunculatus Cav. in the Fajã da Nogueira, and Cytisus scoparius (L.) Link at a number of locations during July and August, 1998. See also Wakeham-Dawson (1998).

Colias hyale (L.)

This species is strongly migratory and Cockerell (1923) records that Malcolm Burr had seen specimens in the collection at the Seminário in Funchal. No details of these are known and it is presumed that they originated from Spain or the Mediterranean Islands.

Cynthia virginiensis (Drury)

Godman (1870) mentions the american painted lady from Madeira but, curiously, not from the Canary Islands where it has been regularly recorded. It is possible that he confused the two island masses as no further records have been reported. Although Higgins & Riley (1970) included this record from Madeira, it has been omitted from the more recent editions.

Issoria lathonia (L.)

Although the queen of spain fritillary has been recorded from Madeira on a number of occasions—indeed, Baker (1891) described it as abundant—its appearance would appear to be dependent upon migration from Portugal, North Africa or even the Canary Islands. The Municipal Museum at Funchal has two specimens (nos. 1910 and 1911), but these carry no collection data.

Hypolimnas misippus (L.)

As with Colias hyale, Malcolm Burr is reported by Cockerell (1923) to have seen specimens of the false plain tiger in a collection at the Seminário in Funchal. It is not known whether these specimens still exist, or details as to the localities and dates of
their capture. In the Municipal Museum at Funchal there is a single specimen that was taken at Quinta Fé, Funchal, 12/11/1950.

_Danaus chrysippus (L.)_

There is a single reputedly Madeiran specimen (No. 23907) in the C. H. C. Pickerings Collection at the Funchal Natural History Museum. Unfortunately the specimen carries no other data. It is possible that this butterfly migrated from the mainland of Africa, or the Canary Islands (a distance of approximately 300 miles), where it occurs on Tenerife, Palma and Gomera.

ACKNOWLEDGEMENTS

We gratefully acknowledge the help given to us by Duarte B. Camara, Director do Parque Ecológico do Funchal and his staff. We are also indebted to the Librarian at the Municipal Museum, Funchal, for allowing us to examine and copy from T. V. Wollaston’s original notebooks, and to Peter Brown for taking the colour photograph. We thank Mr G. Bentley, Registrar, The Royal Entomological Society, for granting us permission to include the photographs of T. V. Wollaston and Revd Hamlet Clark. We are grateful to Laura Warren and the students of Brinsbury College, West Sussex, for their hard work in mapping the habitat preference of butterflies in the Ecological Park. We are grateful to John Tennent for helpful criticism of the manuscript, and to our colleagues, Geoff Martin (Natural History Museum, London), Linda Barnett and Craig Emms (University of Warwick). We are especially grateful to CITMA for providing funding to support our research.

REFERENCES


Godman, F. D. 1870. Natural History of the Azores, or Western Islands. London.


SHORT COMMUNICATION

Catharosia pygmaea (Fallén) (Diptera: Tachinidae): a second record in Essex—Whilst sorting through some pan-trap material collected by Peter Harvey during surveys of Rainham marsh, Essex, and passed to me by Colin Plant, I came across a very distinctive tachinid which was unfamiliar to me. It failed to key in Belshaw (1993) but keyed readily to the genus Catharosia in McAlpine (1987). Reference to the excellent tachinid bibliography on the website http://res.agr.ca/ecorc/isbi/biocont/biblio.htm compiled by James E. O’Hara disclosed that Falk (1998) had added this species to the British list from a ruderal site in Warwickshire. Falk’s paper enabled me to confirm the description that the Rainham specimen was the same species. The single male specimen was captured at the eastern end of the old silt lagoons on Rainham marsh. TQ5279, between the 25. viii. and the 6.ix.1998. The pan trap was set by Peter Harvey amongst flower-rich ruderal vegetation. My thanks go to Peter Harvey for permission to publish this note.—D. A. SMITH, 12 Tring Gardens, Harold Hill, Romford. Essex RM3 9EP.

REFERENCES

AGGREGATION OF OVER ONE MILLION 16-SPOT LADYBIRDS IN A BRAMBLE HEDGE, AND "BLUSHING" IN TWO SPECIMENS

RICHARD A. JONES

135 Friern Road, East Dulwich, London SE22 0AZ.

Abstract.—An unusual aggregation of the 16-spot ladybird, *Tytthaspis sedecimpunctata* (L.) is described, in which over 1 million individuals might have been involved. Among them were individuals of a red-orange form.

INTRODUCTION

The 16-spot ladybird, *Tytthaspis sedecimpunctata* (L.), is well known for its overwintering aggregations, and although it is not in the same league as some New World coccinelids which congregate by the bushel, it is regularly found in clusters of several hundreds. Occasionally, overwintering masses number in their thousands and in his recent *New Naturalist* volume, Majerus (1994: Plate 10f) makes a point of illustrating a Suffolk gorse bush where upwards of 30,000 individuals of this species have been known to overwinter.

I have often found a handful, perhaps a few score, of 16-spots gathered together during very early spring—at the base of a fence-post, or against a grass tussock—but I was amazed to discover a bramble hedge in which I estimated over one million individuals were sheltering.

OVERWINTERING AGGREGATIONS

On 22.iv.1998, whilst carrying out an ecological survey of Woodlands Farm, near Bexley in Kent (TQ450768), I noticed several accumulations of the 16-spot ladybird in a bramble hedge. Initial curiosity became incredulity as it soon became apparent that the accumulations were very many and very extensive.

The long bramble hedge (Fig. 1) ran along the top of a large open field that had once been arable, but which had lain fallow for several years. It was exposed and rather windswept, but was south-facing and warm in the spring sunshine. The bramble growth arose slowly and obliquely from the grass edges of the field, with a shallow sloping border rather than the abrupt bulging form characteristic of many blackberry bushes.

Examination showed that this shallow hedge edge had a fringing band about half a metre wide which was about 10 to 20 cm deep. This low edge was dotted with a vast number of clusters of 16-spot ladybirds. They were huddled together on leaves (Fig. 2) and also on the stems, particularly where one stem crossed another (Fig. 3).

A quick estimate showed that there was a group of ladybirds every 10 or 20 cm in each direction across the shallow half-metre border. Clumps ranged from 10 to maybe 150 individuals. I carried out a rough count over a few metres and estimated at least 200 ladybirds per linear 10 cm along the hedge. After walking the half-kilometre field boundary to confirm that the ladybirds were indeed gathered along its entire length, I calculated that it appeared to house at least one million individuals.

The year 1997 was very dry and warm, and judging from the numbers of 16-spot ladybirds in the hedge, this species had a very good season. The hedge in which they were overwintering ran in a zigzag along the northerly edge of the field and, at least on the day of the field visit, the prevailing wind was southerly, directly off the field and onto the hedge. It is tempting to suggest that the beetles lived out in the field...
Fig. 1. The half-kilometre bramble hedge running along the top of a large field. It slopes up very gently from the grass of the meadow.

Figs 2-4. *T. sedecimpunctata* aggregations.

Fig. 2. Accumulation of about 50 overwintering on a bramble leaf. They closely matched the patches of dead leaf in their beige coloration.

Fig. 3. Accumulation of about 35 overwintering on a bramble stem. Their pale colour equally closely matched the buff of the woody stems.

Fig. 4. Single reddish form, one of two specimens found in the hedge, amidst normal 16-spot ladybirds overwintering.

during the summer and that the bramble boundary was the logical place for the overwintering ladybirds to end up.

I was rather surprised to find ladybirds still congregated in overwintering masses in late April, but later discovered (M. Majerus, *pers. comm.*) that because it is a mildew feeder, the 16-spot often does not become active until later in the year than other species. Also the previous fortnight had been very cold and wet. When I revisited the site on 13.v.1998, there was no sign of the ladybird congregations, and only a very few specimens in the sweep net as I searched the nearby edges of the field.

“Blushing”

The largest of the clusters that I noticed contained about 150 ladybirds, but there were also many groups of 5 to 10 and also singletons walking about on the bramble. Despite the notionally strong black and beige patterns of the beetles, they were nevertheless quite cryptic, camouflaged against the mottled and slightly faded leaves, and blending in well with the drab beige of the bramble stems. In the 50 or so groups that I examined closely I kept a keen look-out for any dark specimens, knowing that this species does very rarely have melanistic forms. None was found, but, amongst the
knots of 16-spots were the odd 7-spot, 2-spot and 22-spot ladybirds. In addition, there were two specimens of a reddish orange form (Fig. 4).

I have it on good authority (M. Majerus, pers. comm.) that no such colour form is named, and anyway it is unlikely to be a true variety. Instead, it may be physiologically somehow analogous to the ‘blushing’ seen in the water ladybird, *Anisosticta novemdecimpunctata* (L.). In that species, overwintering specimens are also a drab beige, making the insect well camouflaged against dead reed stems and leaves, but during spring, it acquires a pinkish red background colour (Majerus, 1994: Plate 12c,d). Majerus suggests that this development of red pigment is due to the need for a brighter warming coloration as the beetles become more active, more obvious and more vulnerable to predators.

The reddish form of the 16-spot ladybird is obviously not a common colour variety, and one wonders why it was shown in what appeared to be less than one-hundredth of a per cent of the Bexley specimens. It could be a throwback or some evolutionary potential bubbling under, or it may simply be an artefact of the metabolic changes undergone by an overwintering insect as it prepares for activity once again.

**Acknowledgements**

My thanks to the trustees of the Woodlands Farm Trust for inviting me to survey the farm, and to Mike Majerus for his comments on this article and for his enthusiasm which spurred me on to write it.

**Reference**


**SHORT COMMUNICATION**

*Gonocerus acuteangulus* (Goeze) (Hemiptera:Coreidae) *in a house at Ham, Surrey—*

My colleague G. P. Lewis brought me a live bug he had found in mid-December 1998 at TQ174716 in his house at Ham, into which he had just moved. It had been noted whilst he was unpacking boxes, including some from Ecuador where he had recently been working. Since the insect was unfamiliar to me there seemed a possibility it might have been introduced, but it soon became apparent from the literature that it agreed closely with *Gonocerus acuteangulus* and I then remembered that R. D. Hawkins had told me how this bug, for so long apparently restricted to box bushes on Box Hill, had been turning up further afield (see also 1997 Annual Exhibition report in *Br. J. Ent. Nat. Hist.*, 11: 110 (1998)). Even so the disparity between the four descriptions and the three illustrations I examined made me uncertain until I actually showed the specimen to Roger at Dinton Pastures and compared it with authentic material. One illustration showed the legs to be coarsely hairy, whereas the indumentum is scarcely visible under high power. One of the most obvious characters not mentioned by anyone (not even Douglas & Scott, whose attention to detail is far superior to all subsequent efforts) is the dazzling yellow abdomen revealed when the hemielytra are raised. Whilst the insect was with me for investigation it became active and I put a cherry tomato in its container; feeding was noticed on several occasions over a period of three weeks. It was released near the point of capture on 15. ii.1999.—B. VERDCOURT, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB.
SHORT COMMUNICATION

Stenamma debile (Förster) and Lasius sabularum Bondroit (Hymenoptera: Formicidae) new to Lancashire—The uncommon ant Stenamma debile (Förster) (Dubois, 1993) was discovered at Gait Barrows National Nature Reserve (SD483775) on 21/04/98. A small nest containing a few workers and brood was found under a stone in a shaded area of woodland not far from a flourishing colony of Lasius fuliginosus (Latr.). The Stenamma locality is about 200 km north of the nearest known record in Wales. In England the furthest north that this species has been taken is the Wyre Forest near Button Oak, Worcestershire, and there is an old record for Ayleston, Leicestershire. The locality at Gait Barrows seems quite suitable for this species with many loose boulders and stones in shaded woodland. Robinson (1998) drew attention to the relative abundance of Formicoxenus nitidulus (Nyl.) in nests of Formica rufa L. at Gait Barrows where most nests of the wood ant contained this small inquiline. Other Myrmicine ants seen include Leptothorax acervorum (Fab.) with several nests located under small stones and in moss. Myrmica species were few with only M. sabuleti Meinert taken once in a stony bank and M. ruginodis Nyl. generally abundant.

Formicine species included polygynous nests of Formica rufa with several egg-laying queens seen in the top layer of a single nest. Formica fusca L. was abundant under stones and in stumps in open ground and in one small nest a small queen, possibly a microgyn, was taken. The head width of this specimen measures 1.65 mm compared with the normal range of 1.85–2.1 mm. F. lenani Bondroit also occurs on the reserve under stones in partial shade. Lasius niger (L.) was dominant throughout the limestone pavement area. L. flavus (Fab.) is common along the fringes of the pavement area and on a later visit on June 12 many large nests were seen in sandy soil in the lower part of the reserve near Hawes Water Lake. A very interesting discovery on the later June visit was a specimen of Lasius sabularum Bondroit under a deep stone below a rocky bank. This species was revived from synonymy by Seifert (1988) and has only recently been added to the British list (Skinner & Allen, 1996). It has characters somewhat intermediate between L. unbratus (Nyl.) and L. mixtus (Nyl.) and the senior author has specimens from Devon, Dorset and Boscombe, Wilts. There are also queens of this species from Oxfordshire, Surrey and Middlesex.—CEDRIC A. COLLINGWOOD, 18 Milton St, Skipton BD23 2ED & NEIL A. ROBINSON, 3 Abbey Drive, Natland, Kendal LA9 7QN.

REFERENCES


A NEW ABERRATION OF THE CLOUDED YELLOW
COLIAS CROCEUS (GEOFFROY) (LEPIDOPTERA: PIERIDAE)

ALEC S. HARMER
Covertside, Sway Road, Lymington, Hampshire SO41 8NN.

Abstract.—A new aberration ab. russwurmi Harmer of the clouded yellow, Colias croceus (Geoff.) is described. A series was bred from a typical female captured near Lymington, Hampshire in 1994.

INTRODUCTION

The clouded yellow is a regular migrant to the British Isles, arriving most years and in varying numbers, the last immigration of exceptional note being 1983. In this species the female is dimorphic; the rarer of the two forms has the ground colour creamy white and is called f. helice Hübner (pallida Tutt). It is inherited as a sex-controlled dominant gene, expressed only in the female. Intermediate shades occur, from pure white ground colour (alba Lempke) to the typical orange-yellow. There are ninety-nine named aberrations of C. croceus, as at 1972 (Howarth, 1984).

In describing the white or creamy-white ab. pallida Tutt, F.W. Frohawk (Frohawk, 1934) states ‘These palest forms occur only in the female; no such coloured male is known to exist’. Although the male upperside of ab. russwurmi bears a superficial resemblance to these female forms, there is no evidence to suggest a genetic relationship exists between them; rather that it is due to complete loss of yellow and pink pigmentation.

A typical female C. croceus captured on 4.viii.1994, near Lymington, Hampshire, produced a brood of about thirty-two imagines. Approximately thirteen of these, of which only four (three males and one female) emerged successfully, were of an aberrant form not previously described and not represented in either the National Collection of British Lepidoptera (RCK) or the European Collection, held at the Natural History Museum, London. It would appear to be a new aberration that is characterized by a complete absence of yellow and pink pigmentation to wings, body, antennae and legs. On the underside, the hindwings and borders to the forewings are creamy grey, creating a pale blue effect. The name ab. russwurmi is here proposed.

DESCRIPTION

ab. russwurmi ab. nov

Male. On the upperside of the forewings the normal golden yellow is entirely absent and is replaced by a creamy white; the discoidal spot and marginal borders are black; the basal and costal irroration as normal. The normal ground colour of the hindwings is replaced by creamy white, heavily dusted with grey scales; the discoidal spots are white, encircled in grey; the borders to the wings are black. The hairs to the body are silvery white; cilia white chequered with black.

The underside of the forewings has the normal yellow ground colour replaced by a creamy white somewhat paler than the upperside, especially to spaces 1 and 2, and extending over the marginal borders, creating a pale bluish appearance; the costal iroration and the discoidal and marginal spots are black. Spaces 9 and 10 are densely covered with black scaling uniting with the two black spots—normally

Fig. 2. Clouded Yellow, *Colias croceus* ab. *russwurmi* ab. *nov.* (Photo: A. S. Harmer). Underside of male shown in Fig. 1. Top row (centre). All specimens bred from typical wild female taken on 4.viii.1994, Sowley, near Lymington, Hampshire. The original examples of this aberration are in the author’s collection.
reddish brown—in these spaces. A narrow blackish border extends from the apex down the outer margin as far as space 2.

The normal greenish yellow of the hindwings is replaced by creamy white heavily dusted with grey to give an overall pale bluish appearance. The costal spot in space 8 is accompanied by dense grey scaling which extends towards and along the apex. Both the costal spot and the marginal spots are a much darker, duller reddish brown than normal, almost black. The pupils of the discoidal spot are silvery-white encircled in a dull reddish brown.

Hairs to the underside of the body yellowish grey; cilia silvery white and antennae light brown.

Female. As above, the normal yellow spots in the borders replaced by creamy white.

The aberration has been named after the well-known butterfly artist, collector and a dear personal friend, Mr A. D. A. Russwurm, who will be celebrating his 95th birthday in June 1999.

DISCUSSION

This aberration was bred from a typical female caught by my son Arran Harmer at Sowley, near Lymington, Hampshire, on the 4.viii.1994. The larvae were kept outside and reared on birdsfoot trefoil (Lotus corniculatus), white clover (Trifolium repens), and lucerne (Medicago sativa). They were brought indoors when the weather began to deteriorate and the first few larvae had pupated. The first male ab. russwurmi emerged on 3 October followed by two more on 9 October. A slightly crippled female emerged on 8 October. An unsuccessful attempt was made to breed from her and she now exists only as an extremely worn specimen.

The exact number of the ab. russwurmi in the brood is not known. Possibly a further 10 more coloured up in the pupa and subsequently failed to emerge, or otherwise had difficulty in extricating their wings from the pupa: the slight cilia damage sustained by some of the males during emergence may indicate that the gene responsible for ab. russwurmi has a deleterious effect upon this critical stage. It is not thought the difficulty in emergence was due to environmental factors as typical imagines did so without difficulty. The three males that did emerge successfully also seemed particularly weak. The brood consisted of 12 normal males, 7 normal females, 11 (approximately) male ab. russwurmi, and 2 female ab. russwurmi.

ACKNOWLEDGEMENTS

I should like to thank David Wilson for the photograph of the set specimens, Graham Howarth for his expert advice, and David Carter and Jim Reynolds for their assistance at the Natural History Museum, London.

REFERENCES

Harmer, A. S. 1995. [Exhibit at BENHS Annual Exhibition 1994] British Journal of Entomology and Natural History. 8 (4): Plate II, Fig. 1. and p. 179.
TERRESTRIAL INVERTEBRATES IN SITE ASSESSMENT: A LOCAL PERSPECTIVE

D. A. LOTT, 1 I. BUTTERFIELD 2 AND M. B. JEEVES 3

1 Leicestershire Museums, Arts & Records Service, County Hall, Glenfield, Leicester LE3 8TB
2 English Nature, The Maltings, Wharf St, Grantham NG31 6BH
3 Leicestershire and Rutland Wildlife Trust, 1 West St, Leicester LE1 6UU.

Abstract. The use of terrestrial invertebrates to evaluate sites of local importance for nature conservation is reviewed using Leicestershire as an example. Numerical scores of saproxylic assemblages based on local rarity, national conservation status and dependence on habitat continuity achieved similar rankings. However, the selection of locally important sites using the presence of local red data book species as a threshold criterion reduces problems of ranking sites on the basis of non-comparable data and is simpler to implement. Habitat structures of importance mainly for invertebrates are identified together with suitable quality indicator groups for targeting in surveys. Different target groups are required when assessing sites for educational use. Assessing site management options requires a more comprehensive approach.

INTRODUCTION

The increasing recognition of the contribution that invertebrates make to global biodiversity in terms of sheer numbers of species has highlighted both the importance and the difficulties of invertebrate conservation. In Britain, sophisticated systems for the use of aquatic invertebrates in assessing river systems have now been developed (Wright et al., 1993) and terrestrial invertebrates are becoming more widely employed for site assessment at national level. They feature, albeit briefly, in the guidelines for selecting Sites of Special Scientific Interest (SSSIs) (NCC, 1989) and, more substantially, in the national Biodiversity Action Plan (Anon, 1995). However, their use for site assessment at a county or regional level is patchy, because of the lack of local knowledge and expertise to cover such a wide range of taxonomic groups. Consequently, habitat features of importance for invertebrates are often inadequately considered in assessments of wildlife sites below SSSI level. However, the use of invertebrates in site assessment has a potentially valuable contribution to make in three areas:

1. site quality evaluation and selection of sites for protection,
2. site interpretation for education,
3. predicting the impact of site management options.

These three types of assessment are often confused when designing invertebrate surveys and interpreting data. This paper concentrates on how invertebrates can be used in local site quality evaluations with special reference to Leicestershire, a largely lowland, agricultural county. Other forms of site assessment are briefly mentioned in order to illustrate how they require a different approach.

CURRENT PRACTICE IN LOCAL SITE QUALITY EVALUATION

In many counties, large areas of countryside have been surveyed in order to assess their value for nature conservation. Sites of value from a county level perspective are given a local designation and usually receive some measure of protection under
development plans produced by planning authorities according to the Town and Country Planning Act (1981) supplemented by planning policy guidance from central government (Collis & Tyldesley, 1993). These locally designated sites are variously termed Sites of Importance for Nature Conservation (SINCs) or County Wildlife Sites and they represent a tier of protection below statutorily protected Sites of Special Scientific Interest (SSSIs). Some idea of their prevalence in the countryside can be gauged from the fact that, in Leicestershire, they outnumber SSSIs by a factor of approximately 100:1. In urban areas, they often represent the only form of protection given specifically for nature conservation. Nature conservation bodies have also used the evaluations for prioritising conservation action through the acquisition of land for nature reserves and, more recently, through the implementation of local Biodiversity Action Plans (e.g. Jeeves et al., 1998) and targeting of environmental land management grant schemes such as Countryside Stewardship.

In Leicestershire, site evaluations have been based on phase 1 habitat surveys (Anon, 1990) supplemented by information on the presence of quality indicator species (Wyatt, 1991). This methodology is mainly designed to identify sites of interest for higher plants. For some sites, additional information has been used including lists of invertebrate species supplied mainly by amateur naturalists through the Leicestershire Biological Records Centre, although very few sites have been designated for invertebrates alone.

**Species attributes of use in site assessment**

The distribution of invertebrate information is patchy, both geographically and taxonomically, but there are a number of species attributes with the potential to be used to select quality indicators. These attributes include rarity, habitat specificity and level of threat.

Threatened species and other species of conservation value are listed in the national red data books (Shirt, 1987; Bratton, 1991) or national conservation reviews (e.g. Falk, 1991a; 1991b; Kirby, 1992a; 1992b; Hyman & Parsons, 1992; 1994; Parsons, 1995) and are given various grades of conservation status. In Leicestershire, a series of local red data books have also been produced (Lott, 1995a; McPhail & Morris, 1997). In addition to species of national conservation status, these contain species which are under threat at the local level, where such information is available. The criteria for selection of species in all these lists are largely based on rarity, but also include declining ranges and threatened habitats.

Foster (1996a) discussed the quantification of species attributes for water beetles so that site scores can be calculated from combinations of individual species scores. These procedures can also be applied to terrestrial groups.

National conservation status has been used as the basis for scoring individual species of aculeate bees and wasps (Archer, 1996) and beetles associated with decaying wood (saproxylic beetles) (Fowles, 1997). Rarity scores have been assigned to individual species of ground beetles on the basis of their range size measured in the number of 10km O.S. grid squares occupied according to data provided by the national recording scheme (Eyre & Rushton, 1989).

Eyre (1996) assigned regional rarity scores to ground beetle species in north-east England on the basis of tetrad (2 × 2 km squares) occupancy. In Leicestershire, there is sufficient data to assign similar scores on the basis of 1km square occupancy to beetles, macro-Lepidoptera, dragonflies, spiders and woodlice, but not to other important taxa such as two-winged flies and aculeate bees and wasps.
Dependence on habitat continuity has been used to assign scores to saproxylic beetles. Harding & Rose (1986) allocated saproxylic beetles to three lists according to their strength of association with a continuity of dead wood at a site. These three lists have been used to assign habitat quality indicator scores to individual species (Harding & Alexander, 1994).

In practice, all these different attributes usually give broadly similar results for site evaluation. Table 1 shows the site scores and rankings derived from saproxylic beetle lists from ten sites in Leicestershire. Three sets of scores were calculated from three different species attributes as detailed in Table 2. Rankings are broadly consistent (Kendall's coefficient of concordance, \( W = 0.65, p < 0.05 \)). The advantages of using a substantial species list are illustrated by the inflated habitat continuity score for Beacon Hill which was caused by the presence of a single high-grade indicator in a short list.

### Site Ranking and Quality Thresholds

There are two frequently used methods for calculating site scores from individual species scores.

1. **Summation:** the sum of all saproxylic species scores is used to calculate the Index of Ecological Continuity (Harding & Alexander, 1994). The disadvantage of this method is that the score depends heavily on sampling effort (Fowles, 1997).

2. **Averaging:** the mean score of all species present was used by Eyre & Rushton (1989) in order to reduce the undesirable influence of sampling effort on site scores.

Even after eliminating the influence of sampling effort, seasonal fluctuations and variations in sampling methods can still lead to difficulties in comparing species lists from different sites. Table 3 compares the scores of saproxylic species collected by five different sampling methods at a site in Leicestershire and there is a large variation between them. Omission of the Tullgren funnel samples would substantially alter not only the cumulative score but also the mean species score. Results are also highly dependent on the skills of the surveyors. A false identification of just one high-scoring species can lead to a large error in the site rarity index.

<table>
<thead>
<tr>
<th>Site</th>
<th>Mean species scores</th>
<th>Rankings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Local spp.</td>
<td>Local Rarity</td>
</tr>
<tr>
<td>Donington Park</td>
<td>116 7.31</td>
<td>2.77</td>
</tr>
<tr>
<td>Bradgate Park</td>
<td>88 6.79</td>
<td>1.33</td>
</tr>
<tr>
<td>Swithland Wood</td>
<td>71 6.73</td>
<td>1.58</td>
</tr>
<tr>
<td>Buddon Wood</td>
<td>107 6.53</td>
<td>1.44</td>
</tr>
<tr>
<td>Burley Wood</td>
<td>90 6.27</td>
<td>1.29</td>
</tr>
<tr>
<td>Ulverscroft Nature Res.</td>
<td>86 6.82</td>
<td>1.07</td>
</tr>
<tr>
<td>Croxton Park</td>
<td>70 6.22</td>
<td>1.13</td>
</tr>
<tr>
<td>Beacon Hill</td>
<td>16 3.13</td>
<td>1.06</td>
</tr>
<tr>
<td>Boathouse Walk Plantn.</td>
<td>25 3.56</td>
<td>1.08</td>
</tr>
<tr>
<td>Barrow Gravel Pits</td>
<td>19 4.84</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Table 2. Species scores developed from a) local rarity based on number of grid squares occupied in Leicestershire, b) national conservation status (Hyman & Parsons, 1992; 1994), c) saproxylic indicator grade (Harding & Rose, 1986).

<table>
<thead>
<tr>
<th>Species score</th>
<th>Local Rarity index</th>
<th>National Status index</th>
<th>Habitat Continuity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>recorded in &gt; 31 10km squares</td>
<td>not listed</td>
<td>not listed</td>
</tr>
<tr>
<td>2</td>
<td>recorded in 16 to 31 squares</td>
<td>Nationally scarce grade b or ungraded</td>
<td>grade 3</td>
</tr>
<tr>
<td>4</td>
<td>recorded in 8 to 15 squares</td>
<td>Nationally scarce grade a</td>
<td>grade 2</td>
</tr>
<tr>
<td>8</td>
<td>recorded in 4 to 7 squares</td>
<td>Red Data Book list 3</td>
<td>grade 1</td>
</tr>
<tr>
<td>16</td>
<td>recorded in 2 to 3 squares</td>
<td>Red Data Book list 2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>recorded in 1 square</td>
<td>Red Data Book list 1</td>
<td></td>
</tr>
</tbody>
</table>

Similarly, lack of experience in field surveyors can lead to rare species being overlooked.

These difficulties become overwhelming when ranking sites of a similar quality. Small aberrations in sampling can have a large influence on the precise ranking of a site. However, detailed ranking of sites is rarely required for conservation purposes. The setting of a simple threshold value to qualify sites for designation, reduces many of the ranking problems due to sampling bias, and a threshold is often all that is needed when selecting sites for conservation priority.

New draft criteria for selecting SINCs in Leicestershire include the presence of a breeding or hibernating population of an invertebrate species which qualifies for inclusion in the Leicestershire Red Data Book. In tests, this criterion has proved workable, provided that short-term, artificial sites such as dung heaps and arable fields are excluded. The potential simplicity of this approach makes it easy to operate and easy to understand and avoids many of the pitfalls associated with ranking sites on the basis of non-comparable sampling programmes. It also gives invertebrates the same importance as other groups such as higher plants.

In other regions, there may need to be further modifications of this criterion. It is common practice for local red data books to include nationally scarce species even

Table 3. Variations in species scores achieved by different sampling methods used to collect saproxylic beetles at Donington Park (including Boathouse Walk Plantation), Leicestershire (based on Lott, 1995b).

<table>
<thead>
<tr>
<th>Sampling method</th>
<th>Total no. species</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Cumulative score</th>
<th>Mean species score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beating branches</td>
<td>30</td>
<td>2</td>
<td>4</td>
<td></td>
<td>10</td>
<td>0.33</td>
</tr>
<tr>
<td>Searching fungal fruiting bodies</td>
<td>32</td>
<td></td>
<td>7</td>
<td>7</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Grass trap in tree hollow</td>
<td>34</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Searching under bark</td>
<td>37</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Tullgren funnel extraction from rotten wood</td>
<td>36</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>0.53</td>
</tr>
<tr>
<td>Whole site</td>
<td>140</td>
<td>5</td>
<td>4</td>
<td>19</td>
<td>42</td>
<td>0.3</td>
</tr>
</tbody>
</table>
when these are relatively common in the region. This is entirely appropriate when the region is the national centre of distribution for the species, but, unfortunately, the current list of nationally scarce species includes several that have either recently increased their range or been under-recorded in the past (Eyre, 1998). The use of nationally scarce species to designate SINC's may cause more problems in other parts of the country than in Leicestershire. However, it is feasible to design local red data book selection criteria so that they could be used to identify SINC's effectively.

**Invertebrate groups and habitats relevant to site quality evaluation**

Because there are so many species of invertebrates, it is quite impossible to commission a complete inventory survey for every local site. It is necessary to select target groups for each site in order to achieve maximum benefit from limited resources. Different invertebrate groups vary widely in their suitability for site quality evaluation. Foster (1996b) listed the attributes required for a taxonomic group to be used at a national scale. These can be adapted for local purposes as follows. Target groups should:

- contain a large number of quality indicator species,
- cover the required range of habitats and microhabitats,
- be easy to sample over an extended season,
- be easy to identify and have a well understood taxonomy,
- add significantly to information obtained from other groups.

Table 4 shows that, in Leicestershire, beetles, moths, spiders and flies all contain a sufficient number of potential site quality indicators to make them candidates for survey and use in site evaluation, if the criteria for selecting local red data book species are used to select site quality indicators. On the other hand, although over

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beetles</td>
<td>high</td>
<td>25</td>
<td>269</td>
<td>64</td>
<td>358</td>
</tr>
<tr>
<td>Butterflies &amp; moths</td>
<td>high</td>
<td>2</td>
<td>33</td>
<td>62</td>
<td>97</td>
</tr>
<tr>
<td>Spiders</td>
<td>high</td>
<td>4</td>
<td>14</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td>Flies</td>
<td>limited</td>
<td>4</td>
<td>44</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>Aculeate bees &amp; wasps</td>
<td>low</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Plant bugs</td>
<td>high</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Dragonflies</td>
<td>high</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Woodlice</td>
<td>high</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Caddis-flies</td>
<td>low</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Grasshoppers</td>
<td>high</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>False scorpions</td>
<td>high</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Molluscs</td>
<td>high</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Freshwater crustaceans</td>
<td>limited</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>Total invertebrates</strong></td>
<td><strong>40</strong></td>
<td><strong>380</strong></td>
<td><strong>167</strong></td>
<td><strong>587</strong></td>
<td></td>
</tr>
</tbody>
</table>
200 species of plant bugs have been recorded in Leicestershire, very few of them can be regarded as good site quality indicators.

Recent local reviews of invertebrate groups (Lott, 1995a; Crocker & Daws, 1996; McPhail & Morris, 1997) and of key habitats for conservation (Bowen & Morris, 1995; Lott, 1997) have highlighted a range of habitat features of value for invertebrates. Often these are small scale features which are difficult to relate to more traditional habitat classifications. Several of these habitat features are of minor importance for the standard vertebrate and plant groups used for site conservation evaluation and so they have been somewhat neglected in the past. Therefore, invertebrate groups containing site quality indicators associated with these habitat features become a priority for use in site evaluation. Table 5 lists some habitat features in Leicestershire which are of importance mainly for invertebrates together with the invertebrate groups that are chiefly dependent on them. Aculeate bees and wasps are included on the basis of their importance in neighbouring counties (Falk pers. comm.). A higher local level of aculeate recording would undoubtedly discover species of conservation value associated with bare ground. Flies associated with mature trees are included, because their microhabitats are different from beetles.

Several major invertebrate groups are missing from Table 5. Although there are many species of conservation interest among moths and spiders, they have mainly been recorded at woodland and grassland sites which are already recognised for their botanical interest. It is beetles, flies, bees and wasps that appear to have the capacity to fill gaps in the list of SINCs based on traditional floral assessments. On current knowledge, these are the most efficient target groups to use in surveys designed for site quality evaluation in Leicestershire. Other groups will be of use for other habitats outside Leicestershire. Reviews of invertebrate habitats of wider relevance in Britain include Fry & Lonsdale (1991) and Kirby (1992c).

INVERTEBRATE GROUPS RELEVANT TO OTHER TYPES OF SITE ASSESSMENT

Different species attributes are needed for use in site interpretation or for educational purposes. For example, the best subjects for inclusion in guidebooks and similar media are attractive species which are easily noticed by visitors. Butterflies, dragonflies and grasshoppers are all groups which meet these criteria. They are of limited use for site conservation evaluation in Leicestershire, because they contain too few site quality indicator species and they cover a limited range of habitats.

Table 5. Habitat features of predominantly invertebrate interest in Leicestershire and appropriate target groups for their evaluation.

<table>
<thead>
<tr>
<th>Sites containing...</th>
<th>Target groups</th>
<th>No. indicator spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mature trees (woods, parks, hedges)</td>
<td>saproxylic beetles</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>flies</td>
<td>7</td>
</tr>
<tr>
<td>bare ground (heathland, quarries, urban demolition sites)</td>
<td>aculeate bees &amp; wasps</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ground bees</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>other beetles</td>
<td>39</td>
</tr>
<tr>
<td>undisturbed wetlands (especially temporary ponds, spring-fed flushes, small floodplain features)</td>
<td>ground &amp; rove beetles</td>
<td>41</td>
</tr>
<tr>
<td>exposed riverine sediments</td>
<td>flies</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>riparian beetles</td>
<td>38</td>
</tr>
</tbody>
</table>
Nevertheless, they are often quoted in evaluation documents due to a confusion between these two site assessment functions.

The diversity of invertebrates and their sensitivity to environmental change make them suitable candidates for selecting appropriate site management options and monitoring the impact of changes in site management (Eversham, 1994). Falk (1998) has developed a procedure for assessing the impact of site development on individual invertebrate species. A proper assessment of site management priorities should consider a much wider range of groups than an evaluation for the selection of sites of conservation importance. Butterflies and moths may be of limited use for site selection, but the decline of species associated with open woodland (Warren & Key, 1991) warrants their consideration when drawing up woodland management plans. Unfortunately, two practical difficulties have prevented the use of invertebrate data at many sites which are managed for nature conservation.

First, there is a lack of information on the invertebrate interest present at the majority of sites of local importance. Even where such information does exist, it is often confined to the more popular groups which may not give a true picture of conservation priorities.

Second, non-specialists cannot translate site invertebrate data into management plans. Sites of conservation value are frequently represented somewhere by a forgotten file containing lists of invertebrates compiled by visiting naturalists. Usually, they appear to the site manager as a meaningless procession of scientific names. The interpretation of these lists can only be done by a small number of experts who are familiar with the specialist literature and whose competence is often limited to a small number of groups. There is a need to devise more effective procedures for incorporating the requirements of invertebrates into site management plans.

**Conclusions**

It is important to clearly establish objectives for any assessment exercise because taxonomic groups vary widely in their suitability of use in achieving different objectives.

Although local invertebrate records are neither taxonomically nor geographically comprehensive, existing species data can be used to select an initial schedule of sites of importance for invertebrate conservation by reference to the various lists of species of conservation status. Simple criteria for selection give adequate results and this reduces the resources required for survey and analysis. Consequently, there is little benefit to be gained from developing more complex systems and the priority in site selection should be more fieldwork to identify currently unrecognized sites which are worthy of conservation status for invertebrates. This can be accomplished most efficiently by looking for known habitat features of importance primarily for invertebrates and then surveying the invertebrates associated with them. In Leicestershire, beetles and flies have proved useful in the identification of important nature conservation sites which floral surveys have missed. Several well studied groups do not appear to generate extra sites. Other groups of terrestrial invertebrates cannot be used on current knowledge, although further work may find that aculeate bees and wasps are effective site quality indicators.

The adoption of systems and procedures for accommodating invertebrate interest in site management plans is a much greater challenge for the invertebrate specialist than site quality evaluation. The habitat approach adopted by Kirby (1992c) has potential for prioritizing management objectives at sites where invertebrate data are
absent, but species data may be required to resolve potentially conflicting priorities and, in any case, should provide a surer foundation for making decisions. The successful use of species data depends on selecting management options to meet the ecological requirements of species of conservation value in all taxonomic groups.

REFERENCES


---

OFFICERS’ REPORTS FOR 1998

Council’s Report

At the end of the year the Society’s membership stood at 844, an increase of 29 on the previous year. Forty-eight new members joined the Society, seven resigned and ten were struck-off for non-payment of subscriptions. Two deaths were reported to the Society during the year. Mr K. A. Spencer completed 50 years continuous membership of the Society at the end of the year and was elected a Special Life member.

The Council met seven times during the year at Baden-Powell House and, on average, 14 members attended each meeting. During the year consideration has been given to improving the efficiency and reducing the running cost of the air
conditioning system in the Pelham-Clinton Building. A new maintenance company has been employed and electricity consumption has been much reduced. A final decision on a new temperature and humidity regime for the building has yet to be made. The Society has responded to a consultation paper from the Department of the Environment, Transport and Regions (DETR) on proposed amendments to the list of candidate Special Areas of Conservation (SACs) in the UK, and to another on the entomological content of the Wildlife and Countryside Act. The time given to reply to consultation papers is often very short and the Council is grateful to Mr Stephen Miles for co-ordinating the response to these two papers. A letter was sent to the RSPB in support of their plans for developing a nature reserve on the Inner Thames Marshes.

A new initiative agreed by the Council is the involvement of the Society in collecting data on three heathland flies included on the short list of species requiring action under the UK Biodiversity Action Plan. The Society has set up a steering group to manage this research and has sought volunteers from the membership to carry out the investigation. The Society will provide half the funding for the project for a period of five years and will apply to English Nature for a grant for the other half. The Society’s Conservation Working Group held an ‘Insect Identification Day’ in collaboration with the RSPB at their Minsmere reserve. Six Society members introduced around 60 RSPB members and members of the public to the insects of the reserve and the methods of identifying them. Many appreciative remarks were received from those attending.

Eleven indoor meetings were held at the rooms of the Royal Entomological Society and seven workshop meetings were held in the Pelham-Clinton Building, which was also opened on fourteen occasions for members to consult the collections and library. As a new venture Dipterists Forum and BWARS were invited to host two of the indoor meetings. The average number attending each indoor meeting and signing the attendance book remained at 19. The workshop meetings continue to prove popular with 17 people attending the Pyralid workshop and an average attendance of 12. It is good to see that the rooms are used by members coming from as far away as Yorkshire and Cornwall and, on average, ten people attended on each occasion the library and collections were opened. The numbers attending workshop and other meetings at the Pelham-Clinton Building are taken from those signing the visitors book, the actual numbers attending are likely to be slightly larger. The Council greatly appreciates the contribution of all this year’s speakers and workshop leaders. A video microscope system has been purchased for use at workshops and will enable participants to view on a TV screen the identification characters seen under the microscope by the tutor. Dr I. McLean must be thanked for organizing the programme of meetings and the Council’s thanks are also due to Mr P. Chandler for being present to open and supervise the Pelham-Clinton Building on nearly every occasion.

The Annual Exhibition and Dinner were again held at Imperial College in South Kensington and 213 members and 68 visitors signed the attendance book for the exhibition. This was a slight increase on the numbers attending compared with 1997. An analysis of the figures suggests that members living furthest from London are more likely to attend than those living close by. Although attendance has remained much the same since Imperial College was first used as the exhibition venue in 1987, the number of exhibits has decreased in the past two years. In order to give members more time, after the end of the season, to prepare exhibits a member’s suggestion that the exhibition should be held a month later will be given a trial in 1999. The exhibition venue remains under review but, given the good attendance figures, the
Council is reluctant to make a change that would inevitably put a different group of members at a disadvantage. The meal provided by the College for the Annual Dinner was thought to have been the best for many years and the Society is very grateful to Mr M. Simmons for his faultless and unobtrusive organization of both the Dinner and Exhibition.

David Young continues to ensure that the Society’s Journal and notices are distributed to members and, in spite of some unpredictability with Journal delivery times, still manages to despatch material within a few days of receipt. This year Mr Young has also arranged for the Society to have its own web site and has ensured that the information displayed is kept up to date.

Sales of the Society’s publications are managed by Mr Gavin Boyd and approached £6000 this year. In spite of sales to individual members being much reduced, as there have been no new publications for several years, sales to commercial booksellers remained good.

At the end of the year several members took part in the Society’s third expedition to Belize and, because of the different season of the visit, the species list was considerably extended. A video film was made of the expedition and an edited version will be shown at a future indoor meeting. Earlier in the year there were twenty-nine field meetings organized by Paul Waring, ten of these were joint meetings with other societies. The meetings covered a wide range of localities and habitats from Perthshire to Devon and much useful data were collected.

JOHN MUGGLETON

TREASURER’S REPORT

Last year I reported that the Society had spent more than it had received but this year we are back in surplus. We received £836 more than we spent and additionally there was an unrealised gain on investments of nearly £18,000. It is prudent to discount the investment gains as we have no intention of realising these assets at the moment but we must continue to try and spend our tangible income to further the Society’s charitable aims. The overall net worth of the Society continues to increase but Council must always remember the strictures of the Charities Act that we have no business accumulating income without a specific future use in mind.

I am encouraged to report that managing and administering the Society has cost slightly less than last year at £3,108 while our direct charitable expenditure has risen to £31,852. In addition we have spent just over £4,000 on equipment designed to enhance the facilities available to members, especially at workshops. Both the Research Fund and the Hering Fund have enjoyed more income than the grants made from them, so there is more available for suitable projects in 1999.

Turning to the other funds it is pleasing to report that the Housing Fund, in addition to holding the leasehold at a written down value of £141,000 now has investments valued at £85,000 towards the next time we look for premises! Ambitious plans for publications are in hand for the next few years and the Special Publications Fund is in good heart to finance them with disposable assets of £53,000.

As we, in our previous instar as the South London, entered the century we are now leaving, our financial position was very precarious. Publications were only possible with the aid of donations from anonymous benefactors, and the Society’s guarantors still had to occasionally dig into their own pockets. The annual subscription was seven and six, which I calculate is considerably higher than today’s twelve pounds fifty, but it still did not pay for the cost of the Proceedings. It seems from insurance
records that the whole assets including library, collections and scientific equipment were valued at about five hundred pounds. In total the Society's funds now exceed £460,000 putting us in a strong financial position to maintain stability in a rapidly changing world and provide our members with increasing facilities while making a significant contribution to the study of entomology generally.

Once again I thank Dennis O'Keeffe and Reg Bell for giving up their time to audit our accounts.

A. J. Pickles

Independent Examiners' Report

We report on the accounts of the Society for the year ended 31 December 1998, which are set out below as follows.

Respective Responsibilities of Trustees and Examiners

As the Charity's Trustees you are responsible for the preparation of the accounts, you consider that the audit requirement of Section 43 (2) of the Charities Act 1993 does not apply. It is our responsibility to state, on the basis of procedures specified in the General Directions given by the Charity Commissioners under Section 43 (7) (b) of the Act, whether particular matters have come to our attention.

Basis of Independent Examiners' Report

Our examination was carried out in accordance with the General Directions given by the Charity Commissioners. An examination includes a review of the accounting records kept by the Charity and a comparison of the accounts presented with those records. It also includes consideration of any unusual items or disclosures in the accounts, and seeking explanations from you as Trustees concerning any such matters. The procedures undertaken do not provide all the evidence that would be required in an audit, and consequently we do not express an audit opinion on the view given by the accounts.

Independent Examiners' Statement

In connection with our examination, no matter has come to our attention:

1. which gives us reasonable cause to believe that in any material respects the requirements
   a. to keep accounting records in accordance with Section 41 of the Act; and
   b. to prepare accounts which accord with the accounting records and to comply with the accounting requirements of the Act have not been met; or
2. to which, in our opinion, attention should be drawn in order to enable a proper understanding of the accounts to be reached.

D. O'Keeffe and R. A. Bell
Notes to the accounts
for the year ended 31 December 1998

1. Accounting Policies
The Accounts of the Charity are prepared in accordance with the Charities (Accounts and Reports) Regulations 1995, the statement of recommended practice, Accounting by Charities, and with applicable accounting standards. They are drawn up on the historical accounting basis except that investments held as fixed assets are carried at market value.

1.1 Income
Donations and legacies are accounted for as soon as their amount and receipt are certain. In the case of donations this is usually when they are received. All other income is accounted for under the accruals concept. Gifts in kind are valued at their estimated value to the Charity.

1.2 Expenditure
Expenditure is accounted for under the accruals concept. The irrecoverable element of VAT is included with the item of expense to which it relates. Depreciation is allocated over the expenditure headings on the basis of the use of the assets concerned.

1.3 Tangible Fixed Assets
Tangible fixed assets are stated at cost or trustees valuation less depreciation which is calculated at rates to write off the excess of cost over estimated residual values of individual assets over their estimated useful lives as follows

- Leasehold Buildings at Dinton Pastures: 1/70th of cost
- Fixtures and Equipment: 10% of written down value

1.4 Investments
Fixed asset investments are stated in the balance sheet at mid market value at the balance sheet date.

1.5 Stock
Stock is valued at the lower of cost, including irrecoverable VAT, and market value and consists of publications and sundries held for resale.

1.6 Restricted Funds
Restricted funds are subject to specific conditions laid down by the donors as to how they may be used.

2. Trading Income and Expenditure
Trading income is derived from the sale of the *British Journal of Entomology* to non-members of the Society and from the sale of the Society’s other publications and products, costs are those of printing and distributing these items.

3. Sundry Income
Sundry income has been derived from the sale of surplus insect cabinets and specimens and income from the annual dinner.
4. Tangible fixed assets

<table>
<thead>
<tr>
<th></th>
<th>Leasehold Property</th>
<th>Fixtures &amp; Equipment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cost</strong> At 1 January 1998</td>
<td>£154736</td>
<td>£48928</td>
<td>£203664</td>
</tr>
<tr>
<td><strong>Additions</strong></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>Disposals</strong></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>At 31 December 1998</strong></td>
<td>£154736</td>
<td>£53013</td>
<td>£207749</td>
</tr>
</tbody>
</table>

Depreciation

<table>
<thead>
<tr>
<th></th>
<th>£11050</th>
<th>£9228</th>
<th>£20278</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>At 1 January 1998</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Charge for year</strong></td>
<td>£2210</td>
<td>£4378</td>
<td>£6588</td>
</tr>
<tr>
<td><strong>On disposals</strong></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>At 31 December 1998</strong></td>
<td>£13260</td>
<td>£13606</td>
<td>£26866</td>
</tr>
</tbody>
</table>

Net book values

<table>
<thead>
<tr>
<th></th>
<th>£141476</th>
<th>£39407</th>
<th>£180883</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 31 December 1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 31 December 1997</td>
<td>£143686</td>
<td>£39700</td>
<td>£183386</td>
</tr>
</tbody>
</table>

Leasehold premises represents the cost of building and equipping the headquarters at Dinton Pastures Country Park. The total cost of these premises which were completed during the year to 31 December 1993 are being amortized over the seventy year term of the lease. Fixtures and equipment includes a value for the library and collections as well as computers, microscopes and other ancillary equipment.

5. Investments

In accordance with accounting requirements investments are shown in the balance sheet at market value.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell T &amp; T</td>
<td>4207</td>
<td>1250</td>
<td>6510</td>
<td>1250</td>
</tr>
<tr>
<td>Unilever</td>
<td>4481</td>
<td>248</td>
<td>4941</td>
<td>248</td>
</tr>
<tr>
<td>M &amp; G Charifund</td>
<td>67003</td>
<td>20238</td>
<td>61471</td>
<td>20238</td>
</tr>
<tr>
<td>Treasury 1999 91 4 %</td>
<td>2640</td>
<td>2392</td>
<td>2600</td>
<td>2392</td>
</tr>
<tr>
<td>Treasury 83 4 %</td>
<td>3688</td>
<td>3688</td>
<td>3882</td>
<td>3688</td>
</tr>
<tr>
<td>Hendersons Bond</td>
<td>64951</td>
<td>58000</td>
<td>59007</td>
<td>58000</td>
</tr>
<tr>
<td>Sun Life Bond</td>
<td>65142</td>
<td>56000</td>
<td>56568</td>
<td>56000</td>
</tr>
<tr>
<td>Barings Bond</td>
<td>24916</td>
<td>25000</td>
<td>24291</td>
<td>25000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>237028</td>
<td>166816</td>
<td>219270</td>
<td>166816</td>
</tr>
</tbody>
</table>

6. Debtors

Due within one year

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade debtors</td>
<td>473</td>
<td>561</td>
</tr>
<tr>
<td>Recoverable taxation</td>
<td>4474</td>
<td>3714</td>
</tr>
<tr>
<td>Prepayments and accrued income</td>
<td>2800</td>
<td>2398</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>7747</td>
<td>6673</td>
</tr>
</tbody>
</table>
7. **Cash at Bank and in Hand**

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Westminster Bank</td>
<td>5703</td>
<td>25108</td>
</tr>
<tr>
<td>Capital Reserve</td>
<td>23039</td>
<td>5257</td>
</tr>
<tr>
<td>Societies Reserve</td>
<td>6004</td>
<td>1914</td>
</tr>
<tr>
<td>Current Account</td>
<td>582</td>
<td>77</td>
</tr>
<tr>
<td>Eurocheque Account</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cash waiting to be banked</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>35328</td>
<td>32356</td>
</tr>
</tbody>
</table>

8. **Creditors: amount falling due within one year**

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade creditors</td>
<td>1400</td>
<td>2342</td>
</tr>
<tr>
<td>Accruals</td>
<td>4620</td>
<td>4299</td>
</tr>
</tbody>
</table>

9. **Funds**

Analysis of net assets between funds

<table>
<thead>
<tr>
<th></th>
<th>Tangible Assets</th>
<th>Investment</th>
<th>Net Current Assets</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endowment Fund:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hering Fund</td>
<td></td>
<td>15940</td>
<td></td>
<td>15940</td>
</tr>
<tr>
<td>Restricted Funds:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing Fund</td>
<td>141476</td>
<td>85444</td>
<td></td>
<td>226920</td>
</tr>
<tr>
<td>Special Publications</td>
<td></td>
<td>53121</td>
<td>8776</td>
<td>61897</td>
</tr>
<tr>
<td>Unrestricted Funds:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Fund</td>
<td></td>
<td>34181</td>
<td></td>
<td>34181</td>
</tr>
<tr>
<td>General Fund</td>
<td>39407</td>
<td>48342</td>
<td>37476</td>
<td>125225</td>
</tr>
</tbody>
</table>

|                        | 180883          | 237028     | 46252              | 464163 |

The Hering Fund was endowed to make grants out of income for research in specific areas of entomology.

The Housing Fund consists of the property at Dinton Pastures and money put aside to finance its upkeep and eventual replacement. The funds were derived principally from bequests from the late Duke of Newcastle, Mr Crow and Mr Hammond.

The Special Publications Fund finances the Society’s publications other than the *British Journal of Entomology* and surpluses from such publications are credited to this fund to finance future publications.

The Research Fund was set up in 1996 with funds derived from part of the old Bequest Fund which was closed with the intention of financing future grants for entomological research which would be authorized by Council but not so narrowly defined as those made by the Hering Fund. In 1997 the first grants were made from this Fund.

10. **Grants**

In addition to grants of £600 paid from the Hering Fund and £1003 from the Research Fund the Society has granted £2000 towards the Society’s Third Expedition to Belize out of General Fund.

A. J. Pickles
**Statement of Financial Activities**

*for the year ended 31 December 1998*

<table>
<thead>
<tr>
<th></th>
<th>Unrestricted Funds</th>
<th>Restricted Funds</th>
<th>Endowment Funds</th>
<th>Total Funds 31.12.98</th>
<th>Total Funds 31.12.97</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Incoming Resources</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subscriptions</td>
<td>12128</td>
<td>---</td>
<td>---</td>
<td>12128</td>
<td>10410</td>
</tr>
<tr>
<td>Investment Income</td>
<td>4813</td>
<td>7284</td>
<td>910</td>
<td>13007</td>
<td>13409</td>
</tr>
<tr>
<td>Bequests &amp; Donations</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Trading Income note 2</td>
<td>1161</td>
<td>4090</td>
<td>---</td>
<td>5251</td>
<td>6523</td>
</tr>
<tr>
<td>Sundry Income note 3</td>
<td>7621</td>
<td>---</td>
<td>---</td>
<td>7621</td>
<td>---</td>
</tr>
<tr>
<td><strong>Total Incoming Resources</strong></td>
<td>25723</td>
<td>11374</td>
<td>910</td>
<td>38007</td>
<td>30342</td>
</tr>
<tr>
<td><strong>Resources Expended</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Charitable Expenditure:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of Journal &amp; Distribution</td>
<td>10490</td>
<td>---</td>
<td>---</td>
<td>10490</td>
<td>9289</td>
</tr>
<tr>
<td>Cost of facility at Dinton Pastures</td>
<td>---</td>
<td>3681</td>
<td>---</td>
<td>3681</td>
<td>3693</td>
</tr>
<tr>
<td>Members Meetings &amp; Exhibitions</td>
<td>3527</td>
<td>---</td>
<td>---</td>
<td>3527</td>
<td>3789</td>
</tr>
<tr>
<td>Library &amp; Curation note 10</td>
<td>3963</td>
<td>---</td>
<td>---</td>
<td>3963</td>
<td>693</td>
</tr>
<tr>
<td>Grants</td>
<td>3003</td>
<td>---</td>
<td>600</td>
<td>3603</td>
<td>6120</td>
</tr>
<tr>
<td>Depreciation</td>
<td>4378</td>
<td>2210</td>
<td>---</td>
<td>6588</td>
<td>6629</td>
</tr>
<tr>
<td><strong>Total Resources Expended</strong></td>
<td>25361</td>
<td>5891</td>
<td>600</td>
<td>31852</td>
<td>30213</td>
</tr>
<tr>
<td><strong>Other Expenditure</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management costs</td>
<td>3108</td>
<td>---</td>
<td>---</td>
<td>3108</td>
<td>3357</td>
</tr>
<tr>
<td>Trading costs note 2</td>
<td>68</td>
<td>2143</td>
<td>---</td>
<td>2211</td>
<td>3162</td>
</tr>
<tr>
<td></td>
<td>3176</td>
<td>2143</td>
<td>---</td>
<td>5319</td>
<td>6519</td>
</tr>
<tr>
<td><strong>Total Resources Expended</strong></td>
<td>28537</td>
<td>8034</td>
<td>600</td>
<td>37171</td>
<td>36732</td>
</tr>
<tr>
<td><strong>Net Resources before transfers</strong></td>
<td>(2814)</td>
<td>3340</td>
<td>310</td>
<td>836</td>
<td>(6390)</td>
</tr>
<tr>
<td><strong>Transfers between funds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Net Incoming/Outgoing Resources</strong></td>
<td>(2814)</td>
<td>3340</td>
<td>310</td>
<td>836</td>
<td>(6390)</td>
</tr>
<tr>
<td><strong>Gains &amp; Losses on Investment assets</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrealised</td>
<td>6570</td>
<td>9945</td>
<td>1243</td>
<td>17758</td>
<td>3669</td>
</tr>
<tr>
<td><strong>Net movement in Funds</strong></td>
<td>3756</td>
<td>13285</td>
<td>1553</td>
<td>18594</td>
<td>(2721)</td>
</tr>
<tr>
<td><strong>Fund Balances brought forward at 1st January 1998</strong></td>
<td>155650</td>
<td>275532</td>
<td>14387</td>
<td>445569</td>
<td>448290</td>
</tr>
<tr>
<td><strong>Fund Balances carried forward at 31st December 1998</strong></td>
<td>159406</td>
<td>288817</td>
<td>15940</td>
<td>464163</td>
<td>445569</td>
</tr>
</tbody>
</table>
Summary Income and Expenditure Account

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Income of continuing operations</td>
<td>38007</td>
<td>30342</td>
</tr>
<tr>
<td>Total expenditure of continuing operations</td>
<td>37171</td>
<td>36732</td>
</tr>
<tr>
<td>Net Income/Outgoings for the year</td>
<td>836</td>
<td>(6390)</td>
</tr>
</tbody>
</table>

Balance Sheet
as at 31 December 1998

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed Assets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tangible Assets</td>
<td>4</td>
<td>180883</td>
<td>183386</td>
</tr>
<tr>
<td></td>
<td>Investments</td>
<td>5</td>
<td>237028</td>
<td>219270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>417911</td>
<td>402656</td>
</tr>
<tr>
<td></td>
<td>Current Assets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stocks</td>
<td>9197</td>
<td>10525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Debtors</td>
<td>6</td>
<td>7747</td>
<td>6673</td>
</tr>
<tr>
<td></td>
<td>Cash at Bank and in hand</td>
<td>7</td>
<td>35328</td>
<td>32356</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52272</td>
<td>49554</td>
</tr>
<tr>
<td></td>
<td>Creditors: amounts falling due within one year</td>
<td>8</td>
<td>60208</td>
<td>6641</td>
</tr>
<tr>
<td></td>
<td>Net current assets</td>
<td></td>
<td>46252</td>
<td>42913</td>
</tr>
<tr>
<td></td>
<td>Net assets</td>
<td></td>
<td>464163</td>
<td>445569</td>
</tr>
<tr>
<td></td>
<td>Funds</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endowment Funds—Hering Fund</td>
<td></td>
<td>15940</td>
<td>14387</td>
</tr>
<tr>
<td></td>
<td>Restricted Funds—Housing Fund</td>
<td></td>
<td>226920</td>
<td>221735</td>
</tr>
<tr>
<td></td>
<td>Special Publications Fund</td>
<td></td>
<td>61897</td>
<td>53797</td>
</tr>
<tr>
<td></td>
<td>Unrestricted Funds:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research Fund</td>
<td>34181</td>
<td>30877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Fund</td>
<td>125225</td>
<td>159406</td>
<td>124773</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>464163</td>
<td>445569</td>
</tr>
</tbody>
</table>

The accounts were approved by the Council on 4 February 1999 and signed on its behalf.
BENHS RESEARCH FUND

The sum available for grants in 1998 was £1500, and four applications were received. Three awards were made as follows:

1. Mr M. V. L. Barclay and Mr C. Lopez-Vaamonde, £418, to assist with a project on successional and seasonal changes in the saproxylic Coleoptera of a Berkshire woodland. This grant is for the first year of a longer study on the ecological requirements of the beetles of dead wood and their relevance to the conservation of these species.

2. Dr A. J. A. Stewart, £405, to assist with the collection, collation and computerization of data on the distribution of Auchenorrhyncha. The award will enable a large back-log of distribution records of this important group to be completed so that distribution maps can be produced. It will also enable some under-recorded sites to be surveyed and data to be extracted from some museum collections.

3. Mr J. Webb (Staffordshire Wildlife Trust), £180, towards a project on the distribution of ground nesting solitary bees and wasps in Staffordshire. This survey over three years will help to achieve the objectives of the Staffordshire Biodiversity Action Plan for these species.

The Council invites applications for future awards and hopes that as the Fund becomes better known the number of applications will increase. As the Research Fund was undersubscribed the Council decided that £200 could be transferred to the Hering Memorial Fund which was oversubscribed. The balance of £300 would be available for future awards from the Research Fund. As a consequence the Hering Fund was able to award an additional £200 to Dr V. Zlobin (see Hering Fund Report).

An interim report has been received from Mr J. E. Milner and Mr R. F. McCormick has sent the latest reports of the Devon Moth Group which acknowledge the support of the Research Fund; both were recipients of awards in 1997.

I should like to thank the members of the Research Fund panel for their time and careful consideration of this year’s applications.

JOHN MUGGLETON

PROFESSOR HERING MEMORIAL RESEARCH FUND

The Committee agreed to make two awards from the Fund this year. The sum of £300 was granted to Dr Vladimir Zlobin of the Zoological Institute of the Russian Academy of Sciences, St Petersburg. It was agreed by the Council of the BENHS that this amount should be increased by a further £200 from the newly created British Entomological and Natural History Society Research Fund. Dr Zlobin will use the total sum of £500 to support a visit to London to study types of Agromyzidae housed in the Natural History Museum, London.

Dr Elisenda Olivella-Pedregal, from the Federal Biological Research Centre, Dossenheim, Germany, was awarded the sum of £300 to study the systematics and taxonomy of leaf-mining moths in European orchards. In particular, she plans to resolve taxonomic problems in species of the genus Phyllonorycter. Dr Olivella-Pedregal will use her grant to visit the Natural History Museum, London to study relevant types of this genus.
Professor Rimantes Puplesis, from Vilnius Pedagogical University, Lithuania, made a visit to Belize to collect Lepidoptera leaf-miners last year. Although his grant from the Fund was originally made for work in eastern Siberia, the Committee agreed to allow him to use it instead to support a month-long fieldtrip to Belize. This situation arose because Professor Puplesis was spending an extended period of time at the Natural History Museum, London, an institution with an active research programme in Belize. The visit proved to be extremely successful with over 400 specimens of the moth family Nepticulidae being collected. Among this material about 50 new species are represented. The results of the research will be included in a review of neotropical Nepticulidae and submitted to the Bulletin of the Natural History Museum (Entomology series) for publication later in the year. Our taxonomic knowledge of neotropical Nepticulidae is conspicuously weak, so the grant has enabled an achievement of considerable importance.

The microscope belonging to the Fund has continued to be lent to Mr David Morgan who is preparing illustrations for a book on bees, being written by Mr George Else.

I am grateful to my colleagues on the Hering Fund Committee for their advice and support, and I record my thanks to Dr John Muggleton, who, as Secretary both of the BENHS and the Society’s Research Fund, has also helped the Hering Fund achieve its ends for the last year.


MALCOLM SCOBLE

LIBRARIAN’S REPORT

Those of you who have visited the Pelham-Clinton Building at Dinton Pastures this year will have noticed that large portions of our journal holdings have been removed from the shelves and are not available for loan. This is because I have concentrated on getting unbound journal back numbers bound this year, and in July I sent a large consignment to the binders. This included our journal, the old Proceedings and Transactions as well as the new British Journal. I also sent a bound set of Proceedings and Transactions covering the “war years” for rebinding. This was in poor condition, in odd covers and is the only copy we possess of our own journal for this period. By necessity, it is very slim, a sad reflection on those infamous times. Also included in this batch were Annales Entomologica Fennica, Entomologica Fennica, Entomologist’s Gazette, London Naturalist, Entomologist’s Record, Entomologist’s Monthly Magazine and Linneana Belgica. A list of fairly exacting specifications accompanied these items and I am pleased to report that the bound journals were returned safely to Dinton Pastures in December. A fine job was made, and these items are once again available for loan to members. However, this is not the end of this project as many more titles remain to be dealt with. Consequently, earlier this month I sent for binding a large consignment of the various journals published by the Royal Entomological Society, some of which had been wrongly collated in the past. I look forward to reporting a similarly successful outcome this time next year.
I am also pleased that the new books I reported ordering this time last year have all arrived safely and are available for loan. I have produced a short article listing these which should be published in our journal soon.

After my report at the AGM last year, Raymond Uffen requested that I prepare some instructions on the use of the Society’s electronic library database. This I have done, and a plastic-laminated copy is secured to the wall behind the access terminal. May I take this opportunity to ask anyone using these instructions who finds an error in them, or thinks that they could be clarified, to leave me a written note of their suggestion. I will review this and, where appropriate, amend the instructions accordingly. While on the subject of things laminated, visitors to the library will observe that we now have lists of subject-areas attached to the ends of the relevant shelves. These should aid you in locating the subject you are looking for and I hope you find them useful; I am in the process of preparing similar lists for the shelves holding bound journals. I wish to take this opportunity to thank Martin Albertini for producing additional shelf labels during the year. The fact that these were needed is testimony to how much the library has expanded its holdings in the past year or two.

As a change to my usual reports I thought I’d include a few basic statistics this year to illustrate the increase in use that the library has seen since the move to Dinton Pastures (Fig. 1).

1989 was the last full year that the Society was based at the Alpine Club. During that year a total of 85 library items were loaned, split roughly equally between books and journals. Our first full year at Dinton Pastures (1993) saw the number of loans equal those in 1989, the main difference being the greater proportion of book to journal loans (roughly 3/4 were books). From 1994, loans have increased steadily but, interestingly, the proportion of books is still outstripping that of the journals (2/3 are books). The last full year for which figures are available (1998) shows that members borrowed a total of 179 items. Though membership numbers may have changed since 1989, this represents an increase in loans activity of 210% since our
days at the Alpine Club, and is good justification, if any is needed, for the difficult choice of location made by Council at that time. The low proportion of journal loans compared to books shows that members are taking advantage of the photocopy facilities which were not available at the Alpine Club. I am sure that without this facility many more journals would have been borrowed over this period.

This year the library has benefited from donations of books from Matthew Smith, Mark Iley, Ian McLean, Paul Waring, Bernard Verdcourt, Brian Baker, John Bradley and Ian Wallace. As is customary, I wish to express my thanks to them for their generosity. I also wish to thank John Muggleton for his continuing help in logging the receipt of journals and updating the database in this respect.

My main aim for the coming year is to continue the journal binding project. I also hope to attend more open days at Dinton Pastures than I have been able to this year. A long-term aim regarding the journals section remains the establishment of an electronic database of bound journals along the lines of the one we have for books, but I doubt that this will be achieved in the coming year.

IAN SIMS

CURATOR’S REPORT

The past year has mainly seen continuity of the projects mentioned in last year’s report. My main activity has been the completion of the new layout for European and other foreign butterflies. As mentioned these follow the arrangement in the recent European checklist. They include 350 species and have been accommodated in 5 cabinets, totalling 145 drawers; in the last three drawers the small collections of Oriental Lycænidae and American butterflies have been placed.

Duplicate European butterflies have consequently been available, in a separate cabinet, for a few months now. Considering the relatively low rate of consultation of the main collection, I was surprised by the rapidity with which these have been raided, so anyone who seeks specimens should come soon.

The Papilionidae, Pieridae and Nymphalidae from the Bretherton collection have been transferred to the cabinet provided by the Reading Museum, so the four cabinets housing this collection are now all the property of the Museum.

David Moore has continued work on the layout of the British Noctuids and will be completing this shortly. As the layout in Bradley & Fletcher order of the British macro-moths will then be complete, I will not mention this in next year’s report so I thank David now for the considerable assistance he has given in arranging this collection to a high standard. I also thank Peter Baker for continuing to repaper drawers to be used in this layout.

Consideration will now be given to revising the layout of the micro-moths. As Eric Bradford’s collection is already arranged according to Bradley & Fletcher, this will form the basis for the new arrangement. We have many unnamed micro-moths, many of them sorted to family, so any volunteers to look at these or pick out specimens of value to the collections, will be welcomed.

A collection of Coleoptera made by John Sankey has been received from his widow and I am grateful to John Owen for conveying this collection to me. It comprises nearly 1000 specimens arranged in storeboxes, many of them from Surrey. This material has been assessed by Jonty Denton, who has kindly picked out some specimens for addition to the collection, while extracting Surrey data.
Specimens have also been donated by Jonty Denton, Peter Grainger, Andrew Halstead, Tony Harman, Roger Hawkins, Matthew Smith and Bernard Verdcourt, to whom I am grateful for their continuing interest in improving the collections.

The re-arrangement of the Lepidoptera collections mentioned has resulted in several cabinets becoming vacated. Seven cabinets and a number of storeboxes were sold during the year and several other cabinets will be available for sale shortly. As offers have already been made for some of these, anyone wanting a cabinet should contact me as soon as possible. The proceeds of sales are being used to purchase further new cabinets which will be obtained shortly, to enable the rehousing of the remaining Hymenoptera and the reorganization of the Diptera according to the new checklist. The plan is to eliminate the central block of cabinets to provide more space for open days and workshops and to enhance security.

Finally, I would like to thank members for keeping the floor relatively clean since the industrial cleaning operation last year and also Ian McLean for recent mopping activity.

PETER CHANDLER

Theft of Butterflies from the Society’s Collection

It was brought to my notice by a member, in January 1999, that some aberrations were apparently missing from the Society’s collection of British butterflies. This was not mentioned in my annual report, because it had yet to be confirmed and the numbers of specimens involved was not known. Since then the collection has been checked by David Moore, who was responsible for laying out the butterflies in their present arrangement, during the latter years at the Alpine Club. He has confirmed that several specimens are missing, in at least two instances other specimens, presumably from the Duplicate Collection, have been substituted for the missing specimens but in other cases it was more obvious as gaps and pinholes were apparent. Unfortunately, the Society does not have a record of the precise composition of the collections so the total number of specimens stolen cannot be ascertained.

While it was not possible to be sure of the full extent of the theft, the following specimens are certainly known to have been removed:

Ab. deleta of the Brown Argus, Aricia agestis (Denis & Schiffermüller)
Ab. nigrina (entirely dark upper side) of the White Admiral, Limenitis camilla (L.)
Albino (no dark marking on forewing) of the Orange Tip, Anthocaris cardamines (L.)
A bilateral gynandromorph of the Chalkhill Blue, Lysandra coridon (Poda)
Several other Lycaenidace are also missing but their identity is uncertain.

It is not known whether any specimens have been removed from the Bright collection, which chiefly comprises aberrations of the Common and Chalkhill Blues, as there is no record of its contents and there have always been many gaps (and pinholes) in this collection during the time that I have been Curator. The collection is laid out with labels for many aberrations that are not represented by specimens. It must, however, be considered possible that specimens have also been removed from this collection and any member visiting the building, who is familiar with this collection, will be asked if they can advise of any losses.

The member who first discovered these losses, was certain that the specimens had been present during his previous visit (in September 1997), so it would appear that
they were removed either late in 1997 or during 1998. This must have taken place during an open day or workshop meeting. Although I was present at all but one open day and at most workshops during this period, it is not of course possible to observe all visitors continuously and the layout of the collections room precludes simultaneous observation of the entire room.

In order to minimize the chance of any recurrence of this problem, the two Hills units containing British butterflies and the two cabinets housing the Bright collection are now being kept locked and any member wishing to view specimens in these collections should first contact the Curator and will be asked to sign a record book when asking for the relevant key. As I am occasionally absent during open days, anyone planning a visit specifically to see these collections would be well advised to inform me in advance (Tel: 01628-664111) as the keys will not be available during my absence.

It is also planned to photograph the contents of these cabinets in the near future, so that a permanent record will be available to enable closer control of these specimens in the future.

PETER CHANDLER

EDITOR’S REPORT

Steady progress has been made through the year in attempting to catch up the publication times of issues of the Journal. However, general shortage of articles and short communications prevented a more rapid publication of individual parts. Volume 11, parts 1 and 2 contained 64 pages each but towards the end of the year it was clear there was insufficient material to sustain this size of part. Accordingly parts 3 and 4 were combined and published in January 1999. This should allow the parts of Volume 12 in 1999 to be published in a more timely fashion. Emphasis will be placed on more timely production to enable better co-ordination with other Society mailings. A revised “Instructions to Authors” has been agreed, which will be published in the first part of Volume 12.

As well as reports of Society Indoor and Field meetings, the Annual Exhibition report and Officers’ reports, Volume 11 included 22 articles. There were 8 on Lepidoptera, 5 on Diptera, 4 on Coleoptera, 2 on Hymenoptera, 1 Hemiptera paper and 1 on Isopoda. One paper was on broadly conservation issues. The majority of these articles are of broadly taxonomic content. This seems a reasonable balance across the Orders and probably reflects the interests of the Members although some groups are not covered at all. I would welcome more contributions on conservation matters and I would also welcome and encourage more formal reports from groups such as County Moth recording schemes, as well as BWARS and Dipterists Forum. I would also like to encourage those who organize field meetings but don’t send reports to try and write something, however brief. We probably only receive reports of around half the field meetings that take place. We should also not forget that the Society’s web site can easily carry information on current activities, as well as being a link into other web sites.

The general lack of articles has meant that some can be published very quickly after review. However, I would prefer to have more ready in the pipeline to make planning future issues easier. I am not sure if some articles that might have been sent to the Society in the past are being published in specialist Newsletters.
I would like to again take this opportunity to thank all those who have given their time in assisting the production of the *Journal* in the past year, not only in writing articles and communications but in reviewing other contributions.

MICHAEL R. WILSON

THE 1998 PRESIDENTIAL ADDRESS—PART 1 REPORT

BRIAN EVERSHAM

The reports published here confirm that the hard work which keeps the Society alive is done by its officers, and the President needs do little more than preside at this Annual Meeting and in Council meetings.

Quiet efficiency characterises each officer: Secretary, Treasurer, Editor, Curator, Librarian, Lanternist and Field Meeting Organiser. Each has performed diligently, effectively and with good humour throughout the year. I should also highlight the role of key figures in the well-being of the Society: Roger Hawkins and Andy Godfrey ensuring membership matters are dealt with promptly, and not least Mike Simmons once again organising the Annual Exhibition and Dinner. Both were judged a great success, and I can now recommend Imperial College as a place to eat!

I should also record our thanks to the Committees who have appraised applications to the Hering Memorial Fund and our Research Grants with probity, imagination, and good sense. And it has been a busy year for the Publications Committee. Under the chairmanship of Ian McLean, it has steered the new Brachycera book toward publication. Particular thanks to the authors, Alan Stubbs and Martin Drake, for their enormous efforts, and to the editing and typesetting team of Roger Morris, Peter Chandler and Malcolm Storey. It is by our publications that future generations will know the Society. I am sure the Brachycera book will do for soldierflies and horseflies what Stubbs & Falk did for hoverflies; and in doing so will enhance the Society’s reputation still further. It should also help strengthen our partnership with Dipterist’s Forum. I think the BWARS evening did.

If publications form a tangible legacy for the Society, its diverse and geographically widely spread field meetings programme confirm our role as the foremost society for field entomology in Britain. Congratulations to Paul Waring for maintaining the momentum.

Likewise, our indoor meetings have maintained their customary excellence, as have the very popular workshops at Dinton Pastures. I am grateful to Ian McLean for his efficiency and insights—it was an especial pleasure to hear talks on shieldbugs, ground-beetles and peatbogs during my year in the chair.

Another steady rise in membership, and one more member being elected to Special Life Membership after 50 years in the Society, suggest we are providing what our members want. Sadly, time, takes its toll, and I have to record four deaths which came to our notice this year.

Mr M. G. Venton died on 14 January 1996. From Barnes in London, he was a lepidopterist, and a regular attender at indoor meetings until the early 1980s. He joined the Society in 1971, and exhibited and communicated at meetings throughout the 1970s.

Mr J. E. Maskrey died in July 1997. Resident in Lymington, Hampshire, he worked on a County Council nature reserve there. He was a good all-round
naturalist, especially interested in aculeate Hymenoptera and several families of Diptera. He had been a member since 1987.

Major A. Bedford-Russell, of Porton, Wiltshire, died in October 1998; a member since 1960, he was an authority on butterflies.

Finally, Mr R. G. Warren of Stoke-on-Trent has died at the age of 86. A very active lepidopterist, and county recorder, he was the author of the *Atlas of the Lepidoptera of Staffordshire* in 1981, and an updated county list two years later.
THE BRITISH ENTOMOLOGICAL AND NATURAL HISTORY SOCIETY RESEARCH FUND

The following grants were made from the fund in 1998: Mr M. V. L. Barclay & Mr C. Lopez-Vaamonde, £418, to assist with a project on successional and seasonal changes in the saproxylic Coleoptera of a Berkshire woodland; Dr A. J. A. Stewart, £405, to assist with the collection, collation and computerization of data on the distribution of Auchenorrhyncha; Mr J. Webb, £180, towards a Staffordshire Biodiversity Action Plan project on the distribution of ground nesting solitary bees and wasps in Staffordshire.

The Society now invites applications for grants to be awarded in December 1999. Awards are open to both members and non-members of the BENHS and will be made to support research on insects and spiders with reference to the British fauna, and with emphasis on:

(a) the assistance of fieldwork on insects with relevance to their conservation,
(b) work leading to the production of identification guides and distribution lists.

Travel to examine museum collections and to consult taxonomic specialists would be included. The work and travel is not limited to the British Isles but must have a demonstrable relevance to the British insect or spider fauna. Preference will be given to work with a clear final objective (e.g., leading to publication or the production of a habitat management plan). Work of leaf miners and gall forming insects should be submitted to the Society’s Professor Hering Memorial Research Fund.

Individual grants are unlikely to exceed £400 and the total available for 1999 is £2000.

Applicants should send seven copies, if possible, of their plan of work, the precise objects, the amount for which an award is requested and a brief statement outlining their experience in this area of work, to Dr J. Muggleton, 30 Penton Road, Staines, Middlesex, TW18 2LD, as soon as possible and not later than 30 September 1999. Further information may be obtained from the same address (email, jmuggleton@compuserve.com).

THE PROFESSOR HERING MEMORIAL RESEARCH FUND

The British Entomological and Natural History Society announces that awards may be made from this Fund for the promotion of entomological research with particular emphasis on:

(a) leaf-miners
(b) Diptera, particularly Tephritidae and Agromyzidae
(c) Lepidoptera, particularly Microlepidoptera
(d) general entomology

in the above order of preference having regard to the suitability of applicants and the plan of work proposed.

Awards may be made to assist travelling and other expenses necessary for fieldwork, for the study of collections, for attendance at conferences, or, exceptionally, for the costs of publication of finished work. In total they are unlikely to exceed £1000 in the year 2000.

Applicants should send six copies, if possible, of a statement of their qualifications, of their plan of work, and of the precise objects and amount for which an award is sought, to Dr M. J. Scoble, Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, as soon as possible and not later than 30 September 1999.

Applications are also invited from persons wishing to borrow the Wild M3 Stereomicroscope and fibre optics illuminator bequeathed to the Fund by the late Edward Pelham-Clinton, 10th Duke of Newcastle. Loan of this equipment will be made for a period of up to six months in the first instance.
ARTICLES

R.J. Paxton & H. Pohl

69 Thomas Vernon Wollaston and the Madeiran butterfly fauna—a re-appraisal.
M.A. Salmon & A. Wakeham-Dawson

89 Aggregation of over one million 16-spot ladybirds in a bramble hedge, and 'blushing' in two specimens.
R.A. Jones

93 A new aberration of the clouded yellow *Colias croceus* (Geoffroy) (Lepidoptera: Pieridae).
A.S. Harmen

96 Terrestrial invertebrates in site assessment: a local perspective.
D.A. Lott, I. Butterfield & M.B. Jeeves

SHORT COMMUNICATIONS

68 Aggregation behaviour in *Philonthus cognatus* Stephens (Col.: Staphylinidae) at Burnt Wood, Staffordshire.
P.J. Smith & M.R. Webb

88 *Catharosa pygmaea* (Fallén) (Diptera: Tachinidae): a second record in Essex.
D.A. Smith

91 *Gonocerus aculeatus* (Goeze) (Hemiptera: Coreidae) in a house at Ham, Surrey.
B. Verdcourt

92 *Stenamma debile* (Förster) and *Lasius sabularum* Bondroit (Hymenoptera: Formicidae) new to Lancashire.
C.A. Collingwood & N.A. Robinson

PROCEEDINGS AND TRANSACTIONS

104 Officers' reports for 1998
104 Council's report
106 Treasurer's report
113 BENHS Research Fund report
113 Prof. Hering report
114 Librarian's report
116 Curator's report
118 Editor's report
B. Eversham

ANNOUNCEMENTS

ibc The British Entomological and Natural History Society Research Fund
ibc The Professor Hering Memorial Research Fund
BRITISH JOURNAL OF ENTOMOLOGY AND NATURAL HISTORY
Published by the British Entomological and Natural History Society
and incorporating its Proceedings and Transactions

Editor: M. Wilson, Ph.D., F.R.E.S., F.L.S. Department of Biodiversity & Systematic Biology, National Museums & Galleries of Wales, Cardiff CF10 3NP. (Tel: 02920 573263, Fax: 02920 239009) email: Mike.Wilson@nmgw.ac.uk
Associate Editor: Richard A. Jones, B.Sc., F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ.

Editorial Committee:

D. J. L. Agassiz, M.A., Ph.D., F.R.E.S. T. G. Howarth, B.E.M., F.R.E.S.
R. D. G. Barrington, B.Sc. I. F. G. McLean, Ph.D., F.R.E.S.
P. J. Chandler, B.Sc., F.R.E.S. M. J. Simmons, M.Sc.
P. J. Hodge B. K. West, B.Ed.

British Journal of Entomology and Natural History is published by the British Entomological and Natural History Society, Dinton Pastures Country Park, Davis Street, Hurst, Reading, Berkshire RG10 0TH, UK. Tel: 01189-321402. The Journal is distributed free to BENHS members.

© 1999 British Entomological and Natural History Society.
Typeset by Dobbie Typesetting Limited, Tavistock, Devon.
Printed in England by Henry Ling Ltd, Dorchester, Dorset.

BRITISH ENTOMOLOGICAL AND NATURAL HISTORY SOCIETY
Registered charity number: 213149

Meetings of the Society are held regularly in London, at the rooms of the Royal Entomological Society, 41 Queen’s Gate, London SW7 and the well-known ANNUAL EXHIBITION is planned for Saturday 27 November 1999 at Imperial College, London SW7. Frequent Field Meetings are held at weekends in the summer. Visitors are welcome at all meetings. The current Programme Card can be had on application to the Secretary, J. Muggleton, at the address given below.

The Society maintains a library, and collections at its headquarters in Dinton Pastures, which are open to members on various advertised days each month, telephone 01189-321402 for the latest meeting news. The Society’s web site is: http://www.BENHS.org.uk

Applications for membership to the Membership Secretary: A. Godfrey, 90 Bence Lane, Darton, Barnsley, South Yorkshire S75 5DA.

Subscriptions and changes of address to the Membership Secretary: R. D. Hawkins, 30d Meadowcroft Close, Horley, Surrey RH6 9EL.

Non-arrival of the Journal, faulty copies or other problems arising from distribution of the Journal or notices to the Distribution Secretary: D. Young, 9 Marten Place, Tilehurst, Reading, Berkshire RG31 6FB.

Orders for books and back numbers of the Journal and Proceedings to the Sales Secretary: G. Boyd, 91 Fullingdale Road, Northampton NN3 2PZ. Tel: 01604 410056.

General Enquiries to the Secretary: J. Muggleton, 30 Penton Road, Staines, Middlesex TW18 2LD. Tel: 01784-464537. email: jmuggleton@compuserve.com


NOTE: The Editor invites submission of photographs for black and white reproduction on the front covers of the journal. The subject matter is open, with an emphasis on aesthetic value rather than scientific novelty. Submissions can be in the form of colour or black and white prints or colour transparencies.
CREAGDHUBHIA MALLOCHORUM GEN. AND SP. N. (DIPTERA: MYCETOPHILIDAE), A REMARKABLE NEW SCOTTISH GNAT WITH A DISCUSSION OF ITS RELATIONSHIPS

PETER J. CHANDLER
43 Eastfield Road, Burnham, Slough, Berks SL1 7EL

Abstract. Two new genera are proposed, Creagdhubhia for a new species from Scotland, C. m allochorum sp. n., and Phoenikiella for a single Mediterranean species, Grzegorzekia phoenix Väisänen. The relationships of these genera with other genera of Gnoristinae, including Grzegorzekia Edwards, which is here restored to G. collaris (Meigen), are discussed.

INTRODUCTION

On 17 May 1994, Graham Rotheray and David Robertson were searching for early stages of saproxylic Diptera in an area of relict Caledonian pine forest (Cunningham sylvestris), situated on a hilltop about 6km south-west of Newtonmore, Inverness-shire and about 1km west of Creag Dhubh (pronounced Craig Dhu). When they lifted some loose bark from a dead pine trunk, they were surprised to find an adult male fungus gnat which was subsequently passed to me for examination. The site was visited as part of the Malloch Society Saproxylic Diptera project.

The gnat was predominantly dark grey in colour, slender bodied with long yellow legs and comparatively large bulbous brownish yellow genitalia. The wings (length 5.2 mm) were narrow, yellowish with a faint dark patch over a median radial cell.

It was soon realised that this was something unusual. The specimen ran in the keys by Hutson, Ackland & Kidd (1980) to the genus Grzegorzekia Edwards, which includes a single British and European species G. collaris (Meig.) and which was monotypic until Väisänen (1984) described a second species, G. phoenix, from Tunisia and Israel. The Creag Dhubh specimen, however, differed in many respects from these species. It was, nevertheless, assigned provisionally to Grzegorzekia and was cited under that name in Note 1 in the new British Diptera check list (Chandler 1998).

An attempt was made to find further material of the species, when I visited the site with its collectors on 18 July 1997. The location, reached after a steep climb through conifer plantations on the lower slopes, afforded spectacular views of the surrounding landscape which were enjoyed by eagles (Aquila chrysaetos), whose eyry surmounted a standing pine at the edge of the hilltop. However, although 41 species of fungus gnats were recorded, the species sought was not found and it remains represented by a unique example.

This species is here described as new and a new genus is also proposed for it. This is placed in context by discussion of the characters of Grzegorzekia species and recognition of this new genus and another for G. phoenix are justified.

Creagdhubhia gen. n.

A genus of Gnoristinae sensu Väisänen (1986) with wing venation resembling that of Grzegorzekia Edwards, presently known only from the male. Adult slender bodied, with long slender antennae and legs, short proboscis and long narrow wings.

Head with three ocelli, almost in line, with the lateral ocelli larger, ovate and situated their individual diameter from the eye margins. Antennae comprising 2 + 14
segments, with long slender flagellomeres. Palpi normally developed, five segmented, with third palpomere bearing a round sensory pit dorsally, fifth palpomere long and slender. Eyes ovate, distinctly emarginate adjacent to antennal base.

Thorax with long irregularly biserial acrostichals and dorsocentrals as well as long setae on sides of mesoscutum; long scutellar marginals and long setae on proepisternum; pleura including laterotergite, mediatergite and metepisternum bare.

Legs slender with all setulae irregular; mid and hind tibiae with some stronger setae on shaft. Mid tibia of male slightly swollen basally, with elongate bare area on basal third, probably corresponding to the apparently sensory area in some other genera (see below). Hind tibia without apical comb. Tibial spurs 1:2:2. Empodium not developed.

Wing membrane devoid of setae and macrotrichia. Vein Sc ending in costa, not setose. Vein sc-r present and situated beyond middle of vein Sc. Vein R₄ present, vertical, forming a small rectangular radial cell. Vein R₅ downturned apically, costa exceeding its tip by a short distance. Crossvein r-m oblique. Median fork with stem short but more than twice as long as r-m. Posterior fork with long stem, fork beginning basad of base of stem of median fork. Radial veins, veins of median and posterior forks and A₁ setose on the dorsal surface; other veins including stem of posterior fork bare.

Male abdomen slender with anterior sternites (1–5) bearing a weakly sclerotised median furrow; segments 7 and 8 short but their sternites well developed, tergite 7 shorter than its sternite and narrowed medially, tergite 8 narrow and about half length of sternite 8 laterally, strongly constricted medially. Tergite 9 large and broad, covering more than basal half of genitalia. Tergite 10 short, cleft medially, bearing pair of oval spinose cerci and well developed bilobed epiproct, basally articulating with bilobed hypoproct. Gonocoxites large and bearing basal (ventral) and apical lobes. Gonostyli present but small and weak, set between apical lobes of gonocoxites. Aedeagus and parameres situated close to ventral surface of gonocoxites.

Etymology. The genus is named for the only known locality of the type-species. Type-species: C. mallowchorum sp. n.

Discussion

Diagnostic characters of this genus in common with Grzegorzekia are Sc ending in costa, sc-r present and situated within apical third of Sc, R₄ present and relatively close to Rs, posterior fork with long stem but forking at or before level of base of the stem of the median fork; lateral ocelli their diameter distant from the eye margins; tibial setulae irregular and no hind tibial comb; empodium rudimentary or absent. Some characters of the male genitalia are in common with G. collaris but not with G. phoenix. e.g. well developed proctiger and the gonocoxites with lateral parts bearing a converging basal lobe ventrally and bilobed apically.

It differs from both Grzegorzekia species in absence of setae on the stem of the posterior fork and from collaris in Sc also lacking setae. It resembles phoenix, but not collaris, in R₄ not being closely approximated to Rs and in the posterior fork arising just before rather than immediately below the base of the stem of the median fork. Other differences from both Grzegorzekia species are the presence of the “sensory” area on male mid tibia, presence of gonostyli (although these are reduced) and presence of spinose setae on the cerci. The relationship between these three species is discussed below and the conclusion is drawn that the differences between G. collaris and G. phoenix are also sufficient to warrant generic separation and a new genus is described for the latter.
Figs 1–3. Male wings. 1, Grzegorzekia collaris (Meigen); 2, Creagdhubhia mallowchorum sp. n.; 3, Phoenikiella phoenix (Väisänen).
Figs 4–5. Male genitalia of *Creagdhubhia mallochorum* sp. n. 4, lateral view; 5, dorsal view of tergites 9–10 and cerci. Abbreviations: *cer* = cercus, *epi* = epiproct, *gc* = gonocoxites, *T* = tergite. Scale line 0.2 mm.
Figs 6–12. 6–9, male genitalia of Creagdhubhia mallochorum sp. n.: 6, ventral view of gonocoxites, aedeagus and parameres; 7, ventrolateral view of gonostylus; 8, lateral view of hypoproct; 9, ventral view of hypoproct. Scale line 0.25 mm. Abbreviations: aed = aedeagus, al = apical lobe of gonocoxite, bl = basal lobe of gonocoxite, gap = gonocoxal apodeme, gc = gonocoxites, gon = gonostylus, pm = paramere.

10–12, male mid tibia, dorsal view: 10, Creagdhubhia mallochorum sp. n.; 11, Grzegorzekia collaris (Meigen); 12, Phoenikiella phoenix (Väisänen). Scale line 0.2 mm.
Figs 13–17. Grzegorzekia collaris (Meigen): 13–16, male genitalia: 13, dorsal view of gonocoxites, aedeagus and parameres; 14, ventral view of gonocoxites, aedeagus and parameres; 15, dorsal view of tergites 9–10 and cerci; 16, lateral view of cerci and proctiger. 17, ovipositor, lateral view. Abbreviations: as Figs 4–6 and hyp = hypoproct, S = sternite. Scale line 0.25 mm.

Creagdhubhia mallochorum sp. n. (Figs 2, 4–10)

Male. Head dark grey with pale setae. Antenna as long as the thorax, with short dark basal segments; first flagellomere pale at base, flagellum otherwise dark grey, covered with short pale hairs; flagellomeres elongate, first 4.5 × as long as broad, subsequent flagellomeres progressively shorter, terminal flagellomere 3 × as long as broad, with a small narrow apical protuberance. Palpus slender, about as long as height of eye, third and fourth palpomeres about twice as long as broad, dark grey; apical palpomere long, slender and paler; proboscis short.
Thorax entirely shining dark grey with three more shining blackish stripes on mesoscutum. Median row of acrostichals and rows of dorsocentrals between these stripes are long, pale and irregularly biserial. Long pale setae on sides of dorsum and irregular series of pale setae on scutellum, some a little more than scutellar length. Proepisternum with long pale setae. Pleura including laterotergite and mediotergite are bare.

Legs yellow, with coxae slightly greyish; long setae on coxae pale, other leg setae dark. Femora with only irregular short setulae. Tibiae covered with irregular dark setulae, mid and hind tibiae with a few larger setae, which are shorter than tibial width. Mid tibia (Fig. 10) with basal two-fifths slightly swollen, with a narrow bare strip situated posterodorsally on second fifth, with a row of longer setulae on its anterior margin; beyond this area 3 anterodorsal setae and 1 posteroventral seta level with the last of these. Hind tibia with 2 anterodorsals, 3 posterodorsals and 3 short posteroventral setae near tip. Tibial spurs pale yellow; 1 = tibial width, 2 a little longer, 3 2.5 × tibial width.

Wing (Fig. 2) long and narrow, pale yellowish with a faint darker patch over the radial cell, extending to the stem of the median fork. Costa and radial veins brown, Sc and other veins paler. Sc long, reaching costa level with base of Rs, crossvein sc-r at its apical quarter. Veins R₁ and R₅ long, parallel. R₅ ending near wing tip, costa exceeding it by a quarter distance to M₁, R₄ vertical, forming a short radial cell subequal to crossvein r-m in length. Stem of median fork short, but more than twice as long as r-m and fork begins a little beyond level of R₄. Veins M₂ and CuA₁ slightly abbreviated from wing margin. Posterior fork long, beginning basal to base of stem of median fork. Vein A₁ long, reaching level of half length of CuA₂. Haltere yellow.

Abdomen shining dark grey with pale hairs; tergites 2–4 long, 5–6 progressively shorter, 7–8 short but distinct; tergite 7 narrowed to a third length of sternite 7 medially; tergite 8 laterally about a third length of sternite 8 but strongly narrowed medially; sternites 1–5 weakly sclerotised with broad median and narrow subm marginal furrows; sternites 6–8 more uniformly sclerotised. Genitalia large and mainly brownish yellow (Figs 4–9); basal part covered by tergite 9 (Fig. 5) which is large and dark grey, truncate apically, with median emargination. Cerci are large, ovoid and bearing strong spinose setae on the apical and internal surfaces. Proctiger well developed; epiproct (Fig. 4) with two strongly thickened lobes, closely apposed to the cerci; hypoproct (Figs 8–9) with a pair of strap-shaped processes, broadened and bearing 3 setae apically. Gonocoxites large with broad lateral lobes (Fig. 4, 6), each of these basally bearing a broadly rounded ventral lobe and apically bilobed with narrower setose ventral lobe and small quadrate gonostylus (Figs 6–7), articulating with inner surface between these apical lobes. Basally gonocoxites enclose aedeagus and parameres (Fig. 6), situated ventral to the gonocoxal apodemes, which are apically fused to the internal surface of the lateral lobes of the gonocoxites.

Wing length 5.2 mm, body 5.5 mm, antenna 2.7 mm, hind leg 7.5 mm.

Female. Unknown.


Etymology. The specific name refers collectively to the members of the Malloch Society, who have done so much to advance knowledge of the biology and distribution of Scottish Diptera.

Biology. Little can be deduced as to the precise requirements of this species from the circumstances of the single find. However, it seems likely that the gnat had recently emerged from the pupa, which was probably situated under the pine bark.
Development may also have taken place in this situation, although whether the larva is saproxylic or mycophagous awaits further investigation.

**Grzegorzekia collaris** is known to be associated with damp decaying wood of broad-leaved trees and several of the recently recorded sites are alderwoods; it is very local, but found throughout Britain. Details of the rearing by R. E. Evans were given by Hutson, Ackland & Kidd (1980) and Chandler (1993). Larvae live on the surface of damp rotten wood, from which they retreat into a web, which is individual but may be in numbers together. Pupation takes place on the wood, without a cocoon. The biology of *G. phoenix* is unknown, but it was found in Tunisia at a locality with date palms (*Phoenix dactylifera*), hence the name.

**Characters of the species hitherto placed in Grzegorzekia Edwards**

As indicated above, *G. collaris* (Meig.) differs in many respects from *C. mallochorum*. The body and legs are less slender. The thorax is shining black, except for the yellow prothorax, so the mesoscutum is without distinct stripes. The abdomen is shining black with yellow basal markings on each segment, especially developed on tergites 3–4. The legs are entirely yellow, lacking the “sensory” area on mid tibia (Fig. 11). The wing (Fig. 1) is broader than that of *mallochorum* and is brownish apically as well as a spot over the radial cell; the latter spot is darker but more restricted to the vicinity of the cell than in *mallochorum*. Vein R₄ is situated close to the junction of Rs with r-m and is variable in the extent of this proximity (even in two wings of the same individual), sometimes being fused with Rs before the junction, so radial cell more or less contracted and in some cases almost obsolete. Vein Sc is setose on the apical half and sc-r is situated closer to the base of Rs than in *mallochorum* or *phoenix*.

The male genitalia of *collaris* also differ markedly in structure from *mallochorum*. They were figured by Hutson, Ackland & Kidd (1980) and by Soli (1997; Figs. 27, D–F, not C–F as stated), who indicated the homologies of the parts with other genera of Mycetophilidae. The figures provided here (Figs 13–16) illustrate the differences from *mallochorum* and *phoenix*, as well as the characters in common with these species. The most significant character is the loss of differentiated gonostyl, a character shared with *G. phoenix*. The weakly developed gonostyls in *C. mallochorum* may represent a stage in the loss of these structures. The genitalia are overall shorter and broader than in *mallochorum*; tergite 9 (Fig. 15) is similar proportionally but simple in structure and tergite 10 is a narrow medially constricted strip; the cerci are simply setose without spines. The proctiger (Fig. 16) is well developed, as in *mallochorum*, with a bilobed epiproct closely associated with the cerci and bilobed hypoproct articulating basally; the lobes of both epiproct and hypoproct are slender with a single apical seta. The lateral parts of the gonocoxites (Figs 13–14) are more deeply bilobed apically with the better developed dorsal lobe bearing spines and the basal (ventral) lobe is slender and curved with long apical setae (Fig. 14). The aedeagus and parameres (Figs 13–14) are proportionally much larger. Soli has apparently misidentified, as parameres, the slender processes extending beyond the apical margin of the gonocoxites (Figs 13–14). These processes are actually outgrowths of the gonocoxal apodemes and occupy the position of the missing gonostyl.

Although the female of *C. mallochorum* is as yet unknown, females of *collaris* and *phoenix* are available. The ovipositor of *collaris* (Fig. 17) is short and dark coloured with yellow two-segmented cerci; sternite 8 bears a series of spinose setae on the straight-edged middle portion of its apical margin (the labia of Soli, 1997).
Additional material of *G. phoenix* from Israel was reported by Chandler (1994) and this species has also been found in Malta (Gatt & Chandler in preparation). Fresh examination of the Israeli material, from which the figures included here have been drawn, permitted the conclusions reached here. This species was assigned to *Grzegorzekia* on the basis of the wing venation (Fig. 3). The most obvious differences from *G. collaris* are the more distad position of R₄, so that the radial cell is at least twice as long as broad, and the more basal position of the base of the posterior fork; distribution of setae on wing veins is similar to *collaris* except for absence of setae on Sc; the wing is uniformly yellowish without darker markings. The body is dark brown with the apical margins of abdominal tergites yellowish; the legs are yellowish and similar in structure to *collaris*, the male mid tibia (Fig. 12) lacking a “sensory” area and with stronger setae about as long as the tibial width.

The male genitalia of *G. phoenix* were figured by Väisänen in tergal, lateral and sternal views but not described by him. It was, however, obvious that gonostyli are absent, a character in common with *G. collaris*. Here tergite 9 and the associated structures (Fig. 19) have been removed to figure the gonocoxites and aedeagal complex in dorsal view (Fig. 18). Tergite 9 is simple in structure as in *collaris* but distinctly shorter than broad; tergite 10 narrow and weakly sclerotised; epiproct not clearly differentiated from cerci but hypoproct comprising a pair of apically tapered lobes bearing a single apical seta as in *collaris*. The gonocoxites are also more simple in structure than in *collaris* and *mallochorum*, with the basal part broadly rounded ventrally, lacking the basal lobe ventrally and with only a pointed dorsal lobe well developed apically. The relatively small aedeagus and slender apically broadened and internally pointed parameres are ventrally situated, enclosed within the broad basal lobes of the gonocoxites.

Although Väisänen (1984) described the female of *phoenix*, he did not figure it, so the ovipositor is figured here (Fig. 20). It is broadly similar in structure to that of *collaris*, but differs in many details, especially the form of sternite 8, which lacks spinose setae.

A new genus is proposed below for *G. phoenix*.

**Phoenikiella gen. n.**

A genus of Gnoriistinae *sensu* Väisänen (1986) with wing venation resembling that of *Grzegorzekia* Edwards. Adult slender-bodied, with long antennae and legs, short proboscis and wings broad, but a little narrower than in *Grzegorzekia*.

Head with three ocelli, almost in line, with the lateral ocelli larger, ovate and situated their individual diameter from the eye margins. Antennae comprising 2+14 segments, with long slender flagellomeres. Palpi normally developed, five segmented, with third palpomere bearing a round sensory pit dorsally, fifth palpomere long and slender.

Thorax with long irregularly biserial acrostichals and dorsocentrals as well as long setae on sides of mesoscutum; long scutellar marginals and long setae on proepisternum; pleura including laterotergite, mediocerite and metepisternum bare.

Legs slender with all setulae irregular; mid and hind tibiae with some stronger setae on shaft. Mid tibia of male without “sensory” area differentiated. Hind tibia without apical comb. Tibial spurs 1:2:2. Empodium not developed.

Wing membrane devoid of setae and macrotrichia. Vein Sc ending in costa, not setose. Vein sc-r present and situated beyond middle of vein Sc. Vein R₄ present, vertical, forming a small trapezoidal radial cell, longer than broad. Vein R₅ downturned apically, costa exceeding its tip by a short distance. Crossvein r-m
oblique. Median fork with stem short but more than twice as long as r-m. Posterior fork with long stem, fork beginning level with or more usually basad of base of stem of median fork. Radial veins, veins of median and posterior forks, stem of posterior fork and A₁ setose; other veins including stem of median fork bare.

Male abdomen slender with sternites bearing a weakly sclerotised median furrow; segment 7 not much shorter than 6, its tergite almost as long as sternite, segment 8 shorter with tergite 8 narrow and about half length of tergite 7, but not constricted medially. Tergite 9 distinctly shorter than broad, covering less than basal half of genitalia. Tergite 10 narrow and weakly sclerotised; cerci not well differentiated from epiproct, both bearing several long simple setae; hypoproct bilobed, the lobes bearing an apical seta. Gonocoxites broadly rounded ventrally with a median cleft below aedeagus and no setose basal lobe; lateral lobes not bifid apically but tapered to a point; the long pointed processes of the gonocoxal apodemes, found in Grzegorzekia collaris, are lacking. Gonostylus absent. Aedeagus and parameres situated close to ventral surface of gonocoxites.

Female abdomen broader than in male, laterally compressed apically; segment 8 with tergite broad and narrow, about half length of tergite 7; sternite 8 longer, its apical margin with medial portion (labia) between rounded setose lobes (on ventral margin in Fig. 20) lacking spinose setae; tergites 9 and 10 short; cerci elongate, two segmented.

Etymology. The genus is named to signify the distribution of the known species in the Levant and parts of the Mediterranean region colonised by the Phoeniceans.

Type-species: Grzegorzekia phoenix Väisänen.

RELATIONSHIPS BETWEEN GENERA DISCUSSED HERE AND OTHER GNORISTINAE

When he described phoenix, Väisänen (1984) suggested that it was intermediate in some characters between Grzegorzekia collaris and the Nearctic genus Aglaomyia Vockeroth (1980), which was then monotypic and known only from the female. Characters in common between Grzegorzekia and Aglaomyia, which Väisänen considered to represent a monophyletic group, included all of the non-genitalic characters cited above as being in common between Creagdhubhia and Grzegorzekia with the exception of the absence of vein R₄ in Aglaomyia. More recently Zaitzev (1994) has referred the European species Boletina ingrica Stackelberg to Aglaomyia and the male of the Nearctic species A. gatineau Vockeroth has also been discovered. It is consequently now known that Aglaomyia has rather different male genital structure, with large gonostyli, and is probably not closely related to Grzegorzekia.

Phoenikiella and Aglaomyia share a bare vein Sc (as does C. mallochorum) but Väisänen considered this a parallelism. He suggested that a bare metepisternum was a synapomorphy of collaris and phoenix, while they also shared several characters considered plesiomorphous with respect to Aglaomyia.

These genera are placed in the Gnoriistinæ as defined by Väisänen (1986), which largely corresponds to the tribe Gnoriistini of Edwards (1925), with transfer of some genera both ways with the Sciophilinæ sensu stricto. As suggested by the phylogenetic analysis of Palaearctic genera by Soli (1997), this group is probably more paraphyletic than other similar groupings within Mycetophilidae and recognition of this subfamily may not be justified. As presently constituted it comprises a diverse assemblage of genera, which includes some of those with the most plesiomorphous wing venation in the family. Indeed, two genera transferred here from the Leiinae by Väisänen (1986), Tetragoneura Winnertz and Ectrepestho-neura Enderlein, were concluded by Soli to represent the sister group of
Figs 18–20. Genitalia of Phoenikiella phoenix (Väisänen): 18, dorsal view of gonocoxites, aedeagus and parameres; 19, dorsal view of tergite 9, cerci and proctiger; 20, lateral view of ovipositor. Abbreviations: as Figs 4–6 and 13–17. Scale lines, Figs 18–19, 0.2 mm; Fig. 20, 0.33 mm.
Leiinae + Manotinae + Mycetophilinae, this entire group arising within the Gnoristinae. It was, however, unclear from his results whether the restricted Sciophilinae and/or Mycomyinae (which are more clearly monophyletic groups) also arose within a group comprising “gnoristine” genera and the other subfamilies, or had sister group relationships with this large grouping. Soli considered that Paratinia Mik., retained in Sciophilinae by Väisänen, was more closely related to some “gnoristine” genera, especially Drepanocercus Vockeroth. Eudicrana Loew, also considered by Väisänen to represent a subfamiliar taxon, was not studied by Soli.

Most generic divisions in the Gnoristinae were initially based on wing venation, although many have been subsequently supported by other structures including the male genitalia. Many of the genera include relatively few species, the genus Boletina Staeger being the only gnoristine genus with a large number of known species. Soli (1997) provided a modern revision of the moderate-sized genus Coelosia Winnertz but many other genera, including Boletina, are in need of revision. It is clear that some currently recognised genera, especially Dziedzickia Johannsen and Ectrepesthoneura, are paraphyletic and further genera will need to be recognised in these groups.

Väisänen (1984) considered the proposal of a new genus for phoenix, as he recognised that the differences between phoenix and collaris were sufficient to warrant this. However, he did not adopt this approach for several reasons: the suggested monophily of these species within a group also thought to comprise Aglaomyia and in such cases he considered that enlargement of the concepts of existing genera was better than establishing new monotypic genera; also, in cases where there was unresolved polychotomy (such as the suggested trichotomy in this case), establishment of a new genus could be construed as a confession of ignorance. He did, however, also state the counter-argument that following such a solution can lead to a species being forgotten in a genus, in which it has been perhaps wrongly placed, and also suggested that proposal of subgenera might be a useful interim solution.

I agree with the latter suggestions and it might have been appropriate for the taxa newly proposed here to be accorded subgeneric rank within a broadened concept of Grzegorzekia. This may prove to be an appropriate solution, in one or other case, when a thorough revision of “gnoristine genera” world-wide and of other “sciophile” genera as yet unstudied critically has been completed. However, as the differences between the three species considered in this paper are at least great enough to justify subgeneric status in a revised generic classification, I consider it desirable to provide names for them to draw attention to the need for them to be considered in such a revision.

Grzegorzekia in the sense considered by Soli (1997) excludes mallochorum and phoenix because the characters which define it include a setose vein Sc. In the possible phylogenies represented in his Figs 44–46, it either occupies an isolated position or is placed in proximity to Drepanocercus and Paratinia; Aglaomyia was not studied. Although genitalia characters were not utilised in the phylogenetic analyses, they are fully discussed in the text and the absence of gonostyli is evidently unique to Grzegorzekia among the genera studied (also applying to Phoenikiella as indicated here). As suggested above, the weak development of gonostyli in Creagdhubhia may indicate relationship with Grzegorzekia and Phoenikiella. Gonostyli are well developed in Drepanocercus and Paratinia, as in Aglaomyia; these genera also have R₄ present, Drepanocercus being distinguished by the plesiomorphous character of the posterior fork arising near the wing base and Paratinia by the presence of setae on the wing membrane.

Acomoptera Vockeroth, like Aglaomyia a Nearctic genus to which two Palearctic species have now been referred, was also not included in Soli’s analysis. This also has
R₄ present, but differs in the more basal position of sc-r and Rs so that the radial cell is longer and the posterior fork beginning a little beyond the base of the stem of the median fork and gonostyli are also well developed. The European species *D. spinistylus* Soli, assigned to *Drepanocercus* by Soli (1993), appears intermediate between the genotype *D. ensifer* Vockeroth and *Acomoptera*. The basal portion of CuA₁ is also weak and the posterior fork not so clearly forking basally in *spinistylus* as in *ensifer*.

Some species of *Synapha* Meigen also have R₄ present: the species dealt with in this paper run to the couplet including *Synapha* and *Aglaomyia* in the Nearctic key by Vockeroth (1981). *Synapha* differs from *Grzegorzekia* and *Creagdhubhia* by the characters used in the key by Hutson, Ackland & Kidd (1980), i.e. base of posterior fork well beyond base of stem of median fork, lateral ocelli less than their width from the eye margin and presence of a well developed empodium.

There are four other gnoristine genera with R₄ present, which differ from the above in having laterotergites setose: *Apolephthisa* Grzegorzek, which has Sc setose like *G. collaris* but sc-r absent and the posterior fork arising near the wing base, and three genera with Sc ending in R (probably due to the portion of Sc beyond the junction with sc-r being lost), *Dziedzickia* Johannsen, *Hadroneura* Lundström and *Syntemna* Winnertz, the second also with a long proboscis and the last also with the wing membrane bearing macrotrichia. *Ectrepesthioneura* mentioned above also has Sc ending in R and the posterior fork beginning near the wing base.

The character of the "sensory" area on the male mid tibia also requires discussion, as this is one of the distinctions of *Creagdhubhia* from *Grzegorzekia* and *Phoenikiella*. The significance of this character is unclear, as it appears variously developed in several apparently unrelated genera but always in the same position at about the basal third of the tibia. It was described for *Ectrepesthioneura* by Chandler (1980), who also figured it for some species of *Tetragoneura*, *Synapha*, *Coelophthinia* Edwards and *Polylepta* Winnertz. These genera all have a conspicuous broad ovate or elongate area. It was also mentioned that a narrower slit-like area is present in *Phthinia* Winnertz and *Speolepta* Edwards and it is these latter which more closely resemble *Creagdhubhia* in this respect. Soli (1997) cited this character for all of the above mentioned genera except *Tetragoneura* and *Synapha*, where it is present in some species of each genus only; however, the genera concerned were widely dispersed in his postulated phylogenetic trees except for that in Fig. 46, where *Speolepta*, *Coelophthinia*, *Phthinia* and *Polylepta* are nested progressively as sister groups at the base of the Sciophilinae grouping. In his other two postulated trees, *Coelophthinia* and in one case *Speolepta*, both former gnoristine genera transferred to Sciophilinae by Väisänen (1986) are associated with Mycromyinae.

It should also be mentioned that some characters used to define genera in the Gnoristineae are not always of generic significance, such as presence or absence of setae on the laterotergite, both conditions of this character being found in *Boletina*. Spinose setae are present on the male cerci in many but not all species of *Boletina*, so this character is not unique to *Creagdhubhia*. An analysis of all characters for the world fauna will be necessary for a natural generic classification to be achieved.

**Acknowledgements**

I am particularly grateful to Graham Rotheray and David Robertson for referring the new species to me and for introducing me to the site where it was found. Amnon Freidberg kindly enabled me to re-examine the Israeli specimens. Several specialists
on Mycetophilidae provided useful comments on figures circulated to them of the new species.

REFERENCES


______________________________

ANNOUNCEMENT

CORNSH LARGE BLUE BUTTERFLY RECORDS—Appeal for information

As part of a study on the former occurrence of the large blue *Maculinea arion* (L.) in Cornwall for our County Millennium Butterfly Atlas, I came across an Edwardian record on the national database for “Portreath”, supplied by V. E. Shaw apparently from the private collection of A. Morton. This is the only record for the area, but is some 50 miles south of the normal range along the far north coast of Cornwall and round to Clovelly in Devon. Monk’s Wood have no further details on either name. In order that I can track this record down, I would be grateful for any information on either V. E. Shaw, or the whereabouts of A. Morton’s collection. I would also like to hear from anyone with information on Cornish Large Blues in old collections which have data labels showing specific locations other than Millook or Bude.

If you have any information on the above, please contact me on 01208 880106—MALCOLM LEE, Gullrock, Port Gaverne, Port Isaac, Cornwall PL29 3SQ.
THE ORANGE UPPERWING *JODIA CROCEAGO* ([ID.&S.])
(LEP.: NOCTUIDAE) SURVEY—AUTUMN 1999/SPRING 2000

MARK PARSONS

*Butterfly Conservation, PO Box 444, Wareham, Dorset, BH20 5YA*

The orange upperwing is one of the UK government’s Biodiversity Action Plan (BAP) priority species. Butterfly Conservation has been appointed the Lead Partner for this species. The initial aim of the Action Plan is to determine whether this moth is still present in Britain.

Currently searches are undertaken in an unco-ordinated fashion. There is no overall view of the sites that are being surveyed and those that are not. There is also no indication of the amount of recording effort being undertaken, or techniques being used, in an attempt to try and re-find this species.

The orange upperwing is thought to be an open woodland or woodland edge species, the larva feeding on pedunculate oak and sessile oak (*Quercus robur* and *Q. petraea*). The species is considered to be associated with small or coppice trees that retain their leaves over winter. It occurs as an adult from September to mid May and has been found at ivy blossom in the autumn and at sallow catkins in spring. It comes to light. The last definite record was from Sussex in 1984, although there is a more recent unconfirmed record from Hampshire. Other post-1980 reports are from Cornwall, Somerset, Surrey, Shropshire (unconfirmed) and Cardiganshire (unconfirmed), although records indicate a wider historic distribution in the southern half of England and in Wales (based on information from P. Waring, in prep., *Atlas of the Nationally Scarce and Threatened British Macro Moths*. Joint Nature Conservation Committee).

If you go looking for the orange upperwing this autumn or next spring, or are recording in an area where this species could appear, we would like to hear from you. **Negative results are important**, as this would give an indication of the amount of effort being undertaken and the sites being searched. Do not restrict yourself to the known localities or even habitats; for example heathland with scrubby oaks may be important for this species and it is a habitat that is comparatively under-worked at these times of year. Do not restrict yourself to light-trapping—try natural attractants, e.g. ivy or sallow blossom, or use other attractants such as sugar or wine-ropes.

The data we would like to receive should be in the following format, giving all details where known:

1. Name of site
2. Six figure grid reference
3. Vice-county (and vice-county number)
4. Date of visit
5. Duration of visit (to the nearest hour)
6. Number of recorders
7. Techniques used (including number and type of traps; sugar; ivy blossom; sallow catkins, broken down into number of hours spent on each, if possible)
8. Habitat (broad description only, e.g. deciduous or mixed woodland; heathland etc.)*
9. Weather conditions (max./min. temperature; overcast/clear; rain/dry; wind)

*If the species is found we would like as full details as possible of the habitat conditions and a description of any obvious site management.
2257 Orange Upperwing
Jodia croceago

- Before 1980
- Doubtful record
- 1980 Onwards
- Larval record
- Adult record

Fig. 1. Jodia croceago. Recent distribution.
Please remember to get access permission to any site you are visiting. As there is a possibility of confusion with other species, take particular care over confirming the identification. If possible, take a photograph or retain the specimen.

We would also like to hear from you if you have had experience of this species abroad. In particular, we would like to know about its habitat preferences.

The results (including the important negative results) should be sent to Adrian Spalding at Tremayne Farm Cottage, Tremayne, Praze-an-Beeble, Camborne, Cornwall TR14 9PH (phone no. 01209 831517). If this survey proves successful and gives rise to interesting data, further species (particularly BAP species) may be targeted for similar surveys.

We would like to thank both JNCC and Paul Waring for permission to use information from the forthcoming Atlas and to publish the provisional distribution map.

Further information about this and other BAP priority species of moth, and how you can help, can be obtained by contacting Mark Parsons or David Green at Butterfly Conservation, UK Conservation Office, PO Box 444, Wareham, Dorset BH20 5YA.

________________________________________

SHORT COMMUNICATION

A breeding record of Senometopiaexcisa (Fallén) (Diptera: Tachinidae)—The tachinid Senometopiaexcisa is a rare species in Britain with only a doubtful breeding record. Belshaw (1993, Handbook for Identification of British Insects, Vol. 10, Part 4a(i)) gives the known records as: Lynton, N. Devon, 29.vii.1895; and a further example as “?Painswick in Glouces”. It would appear that it is the identification of the specimen that is in doubt rather than the locality, and that this individual was reared from the geometrid moth Abraxas sylvata (Scop.), a host species utilized by the tachinid’s congener S. intermedia (Herting) (Belshaw, loc. cit.).

On 11.ix.1998 I beat from wych elm (Ulmus glabra) a few larvae of sylvata in a wood near to Orpington, W. Kent, in a vain attempt to breed them. As on previous occasions the larvae died before pupation but one larva produced a single tachinid larva which gave rise to S. excisa later that autumn.

As far as I can determine, this Kent colony of sylvata is the only breeding colony in the whole of Kent, Surrey, Sussex and the London area, although isolated individuals of the moth turn up widely from time to time, and the moth was commoner in the past. Belshaw (loc. cit.) says that the fly parasitizes a range of lepidopterous larvae in Europe, although of what families and on what foodplants he gives no clues. The third species of Senometopia, S. pollinosa (Mesnil), is a parasite of various geometry larvae feeding on pine, and the females are attracted to the scent of this plant; it is possible therefore that excisa may use other larvae feeding on elm, although it is fair to say that there are no other species restricted to elm at this time of year in the south-east of England. Lepidopterists rearing sylvata would perform a valuable service by retaining any parasites reared from its larvae so that we may better understand the biology of this rare species. I thank Peter Chandler for confirming the identity of the tachinid.—GRAHAM A. COLLINS, 15 Hurst Way, South Croydon, Surrey CR2 7AP.
OBSERVATIONS ON THE "GUEST ANT" FORMICOXENUS NITIDULUS NYLANDER IN NESTS OF THE WOOD ANTS FORMICA RUFA L. AND F. LUGUBRIS ZETTERSTEDT IN 1998

NEIL A. ROBINSON

3 Abbey Drive Natland, Kendal, Cumbria LA9 7QN

Abstract.—Observations made in 1997 on Formicoxenus nitidulus (Nyl.) were extended during 1998, including occurrence with F. lugubris. The behaviour of males attempting to mate with a worker, after an apparent mating emergence on a nest of Formica rufa, is described. It is concluded that the males, which are wingless, continue to appear on the surface of a nest for the rest of the season after a mating emergence has taken place. Therefore what was judged to have been a synchronized emergence of males on numerous nests in 1997 may simply have been the consequence of earlier, but not necessarily synchronized, emergences.

INTRODUCTION

Formicoxenus nitidulus is a small (c. 3 mm) myrmecine ant which lives as an inquiline within the large mound nests of the wood-ant Formica rufa and related species (e.g. F. lugubris Zett. and F. aquilonia Yarrow). It nests in small colonies within the host’s nest and therefore is seldom seen except when workers, males or winged queens emerge onto the surface of the nest. In 1998 I extended the observations, which I made in 1997 (Robinson, 1998).

Occurrence with Formica rufa

On 23.iv.1998 at Gait Barrows NNR, Lancashire (SD483774), when Cedric Collingwood delved into a nest of F. rufa to confirm that it contained numerous queens (Collingwood & Robinson, 1999), I found 2 workers of Formicoxenus on the inner nest material. These were the first workers I had seen, since all the individuals I had found on nests in autumn 1997 were males or, rarely, dealate queens. The earliest date on which I saw males in 1998 was 2 August, on the nest where in 1997 I had seen them emerging onto a limestone slab, which they did again on 27 August. The last date was 18 October. By this time all the nests were very wet and mostly inactive, after which further rain terminated observations. Between these dates I saw males on 11 nests (as opposed to 16 in 1997), 8 of which were nests where I had not seen them before, though I was unable to find them on 5 nests where I had seen them in 1997. This supported my 1997 conclusion that they were present throughout the F. rufa population on the Reserve, but suggested that one could not rely on seeing them on the same nests every year.

On 29.viii.1998 at Arnside Knott, Cumbria (SD452772), I saw males on the nest where I had first seen them in October 1996, and on 3 September I found them on only a second nest. On 24 September I examined 30 nests, including the ones on which I had seen males in 1997, spending my customary 5 minutes at each site, without success. I have begun to search other F. rufa sites for Formicoxenus. I found males on one nest at Heathwaite, a National Trust area of calcareous grassland, scrub and woodland adjoining the lower slopes of Arnside Knott, and on one nest in Underlaid Wood, Cumbria (SD485789).
**BEHAVIOUR OF *FORMICOXENUS MALES***

When examining the nests at Gait Barrows and Arnside Knott, I realized that the most likely explanation as to why I could usually rely on finding *Formicoxenus* males on nests where I had seen them earlier, while there were other nests where I did not see them at all, was that the males continue to appear on the surface of the nest after a mating emergence has taken place. The queens, which are winged, are believed to re-enter the nest after mating, or to fly other nests (Brian, 1977). The males however are wingless and are unlikely to leave the nest. My observations suggest that they continue to come out onto the surface of the nest, and run searchingly about, for the rest of the season. This has caused me to revise the conclusion I reached in 1997: that I had seen a synchronized emergence of males. It does appear that there had been a larger scale emergence of males in 1997 than in 1998, but the fact that I saw them on a large number of nests in the same period could have been the result of them continuing to appear after earlier, but not necessarily synchronized, emergences.

On 29.viii.1998 at Heathwaite, I witnessed what appears to have been a mating emergence. On this site the *F. rufa* nests are concealed in scrub, unlike Arnside Knott, where they are mostly on woodland edges or beside paths. On a very large nest in the dense shade of a hazel–ash–yew clump, where a chink of sunlight penetrated, I saw a glistening knot of *Formicoxenus*, which I seized and tubed with a large pinch of the surface nest material. At home I found that the tube contained 5 males, vigorously pursuing another individual, only slightly larger and similarly coloured, (orange thorax contrasting with red head and abdomen), which turned out to be a worker. I had found dealate queens in 1997 and they are noticeably longer than the males and uniformly red in colour. This worker was so like a male that it was not until it extruded its sting that I was quite sure of its identity. Holding the tube under a binocular microscope, I was able to watch the males’ attempted mating behaviour. One would mount the worker, extending its lyre-shaped antennae over the worker’s head, rapidly palping her head and the inner sides of her antennae, while curling the tip of his abdomen round and under that of the worker, probing (unsuccessfully) with his everted genitalia. Quite often another male would mount on top of the first. The frenzied behaviour of the males suggested that a queen had originally been present, but evidently not in the sample which I had collected. I continued to see numerous *Formicoxenus* males on the surface of this nest on subsequent visits, until 27 September.

**OCCURRENCE WITH *FORMICA LUGUBRIS***

In the north west of England *F. rufa* is now mainly confined to limestone sites in the Arnside–Silverdale AONB, which straddles the boundary between Lancashire and Cumbria. *F. lugubris* is an upland species which occurs in the Pennines, Scotland and in the Lake District where it has a very restricted distribution, being confined to woodlands in the Borrowdale and Duddon valleys. It closely resembles *F. rufa*. and is distinguished only by details of its hairiness (Bolton & Collingwood, 1975). However it has very different ecological preferences, being tolerant of wetter, and requiring cooler, conditions than *F. rufa* (Cedric Collingwood, pers. comm.). It also has a noticeably different colony structure, as its nests are much more commonly linked by trails into social complexes than those of *F. rufa*.

In Borrowdale *F. lugubris* nests can be seen in the oak–birch woodlands along the narrow road from Lodore to Watendlath. On 17 September I examined 3 nests near Ashness Bridge (NY270197) for *Formicoxenus*, and 10 nests in Lodore Woods
(NY269189) without success *F. lugubris* is common in woodlands in the Duddon valley, right up to Seathwaite. Walking down the valley from Seathwaite on 19 September I saw numerous nests of *F. lugubris* in a great variety of situations, from sunny exposed slopes to damp shady woodlands, and found *Formicoxenus* males on one nest near Tongue Wood (NY225963) (VC69). At Wallowbarrow (NY219964) (VC70) I also found males on one nest, and a slightly larger individual which proved to be a worker. This confirms the presence of *Formicoxenus* in nests of *Formica lugubris* in both vice-counties of Cumbria.

**REFERENCES**


**SHORT COMMUNICATIONS**

Recent British records of *Gymnosoma nitens* Meigen (Diptera: Tachinidae) and some comments on its status in Britain—On 18.vi.1998 I swept a small yellow-bodied fly around the derelict yard of Woodlands Farm near Bexley (TQ446765, vice-county 16, West Kent). Although immediately recognizable as one of the globose tachinids (Phasiini) which parasitize heteropteran bugs, it wasn’t until autumn that I got around to confirming its identity. Using the key by Belshaw (1993), it easily worked to a male of *Gymnosoma nitens*, a red data book 1 species.

Examining the Bexley specimen I thought it looked familiar and located two further specimens, both males, in my collection. They were collected by sweeping near White Downs, Surrey, 15.viii.1977, along with a third specimen, a female, now in the collection of my father, A. W. Jones. At the time they had been misidentified using the key by van Emden (1954) as the similar-sized *Cistogaster globosa* (Fab.) the key did not include *G. nitens*. Two specimens were exhibited under this incorrect name at the 1977 BENHS annual exhibition (Jones, 1978).

The single record for *G. nitens* listed by Belshaw (1993)—Happy Valley, near Boxhill, Surrey, 1956—has since been added to. Plant (1996) and Plant & Smith (1996) reported two specimens from Grays, South Essex and one from Sandwich, Kent. In addition, the fly has turned up on other Essex sites on the north bank of the Thames Estuary (C. W. Plant, personal communication) and Clemons (1999) reports finding it in 1985 and 1996 in Kent.

In a recent paper, Morris (1997) reviewed the status of *Gymnosoma rotundatum* (L.), and reported that it too had recently become more widely and more often recorded. It started to appear more regularly in the 1950s, and during the 1970s, 80s and 90s has increased tremendously. Morris suggested the increase may be linked to the recent spate of hot dry summers. He did not give any further climatic information; the data he reported were collated by decade and it would be difficult to match precise yearly weather to this scheme. But his suggestion seems entirely feasible.
The recent increase in Gymnosoma nitens might well be linked to the same weather factors. Indeed, it is probably easier to link this species’ increased occurrence to the climate. The recorded years of its capture, 1956, 1977, 1985, 1996, 1997 and 1998 were not necessarily just hot dry years in southern England, but perhaps more importantly they all followed very hot and dry years and subsequent mild winters. Our knowledge of the fly’s life history is vague and patchy and it is based on only a handful of breeding records from the Continent. Nevertheless, these climatic elements fit what little we do know. It seems clear that hot dry summers ought to favour the host shield bug, Sciocoris curritans (Fab.), which judging from its ground-dwelling habits, its preferred chalky and sandy habitats and its southern and coastal distribution, is a warmth-loving species. Because Gymnosoma overwinters as a larva in its host bug, mild winters ought to occasion low mortality.

Incidentally, according to Kirby (1992) the North Downs near Box Hill are a stronghold for the nationally scarce (notable) Sciocoris, so it is not surprising that the fly was first found here. The only specimen of this bug that I have ever come across was on the sandhills at Deal, very close to Sandwich where Plant & Smith (1996) recorded G. nitens. Although I did not find Sciocoris at Woodlands Farm, I did find the closely related Podops immeta (Fab.), another secretive ground-dwelling shield bug.—Richard A. Jones, 135 Friern Road, East Dulwich, London SE22 0AZ.

REFERENCES

Belshaw, R. 1993. Tachinid flies. (Diptera: Tachinidae). Handbooks for the Identification of British Insects 10(4a(i)).


Nysius senecionis (Schilling) (Hemiptera: Lygaeidae) in Norfolk—Jones (1997, Br. J. Ent. Nat. Hist., 10: 2) urged the submission of notes on the expansion of this bug’s range in Britain. Single specimens were found at two sites during the 1997 programme of biological survey: Brancaster Marsh (TF782451), one swept from sea wormwood Artemisia maritima L. and sea aster Aster tripolium L. at the dune-saltmarsh fringe. 2.ix.1997; and Little Eye, Salthouse Marshes (TG078443), one beneath a mat of sea campion Silene maritima With. over sand and pebbles, 8.ix.1997. I would like to thank Peter Kirby for confirming my identification.—Keith N. A. Alexander, Biological Survey Team, The National Trust, 33 Sheep Street, Cirencester, Gloucestershire GL7 1RQ.
1998 ANNUAL EXHIBITION
Imperial College, London SW7 — 31 October 1998

The following account of exhibits has been compiled by A. M. Jones (British butterflies), G.A. Collins (British Macrolepidoptera), R.J. Heckford & M.R. Wilson (British Microlepidoptera), N. M. Hall (Foreign Lepidoptera), P. J. Chandler (Diptera), P. J. Hodge (Coleoptera), A. J. A. Stewart (Hemiptera), A. J. Halstead (Hymenoptera and other orders), R. Dyke (Illustrations). The photographs for the two colour plates were taken by D. E. Wilson and the cost of printing these plates was met by a grant from the Hammond Memorial Fund.

British Butterflies

Bailey, K. E. J.—Results of temperature experiments on larvae and freshly formed pupae. A series of Vanessa atalanta (L.) ab. merrifieldi Standfuss and a single extreme unnamed aberration, all from pupae chilled for 22–26 days; similar treatment with Inachis io (L.) has produced ab. fischeri Standfuss. Cynthia cardui (L.) with extended pale markings to the underside from pupae held at 37° for 3 days, and a series with strongly aberrant forewings and less aberrant hindwings (a reverse of the usual situation), believed to have been caused when fresh pupae were accidentally exposed to overheating in the sun and then chilled for 15–20 days. Argynnis lathonia (L.) with glomerate markings from late final instar larvae chilled for 2 days and the fresh pupae cold shocked. Also a series of extreme melanic (Plate 1, Fig. 11) from larvae reared slowly in cool conditions, then accelerated by warmth and the pupae given hot and cold shocks. This may help to explain the occasional clusters of Argynnis aberrations (especially in A. paphia) that can occur after a heatwave. Also shown from various cold shock regimes was a series of Eurodryas aurinia (Rott.) ab. sebaldus Schultz and a Melitaea cinxia (L.) similar to ab. fulla Quensel.

The results of breeding from a female Aglais urticae (L.) ab. pseudocennexa Cabeau. Aberrations appeared in the F1 generation and selected pairings gave stronger examples in the F2 and a few obsolescent specimens. Some F2 pupae were chilled for 20–28 days and resulted in pseudocennexa with increased melanic tendencies. Amongst the F2, was an extreme ground-colour aberration with pale forewings of a violet tint. The exhibitor believes that the frequency and depth of expression of pseudocennexa in both generations indicate that it is due to a polygenic condition.

A female Polygonia c-album (L.) f. hutchinsoni Robson, taken out of season on 13.ix.1997 amongst many normal hibernating specimens. From eggs laid, 50+ type specimens were reared later the same year; the female did not die but entered hibernation on 25.x.1997 where she remained until 23.ii.1998. More eggs were laid and several adults reared. The exhibitor wonders if this is a bizarre response to global warming?

Also exhibited was a bred series of Colias croceus (Geoffroy) with reduced pale markings to the forewing borders in the F2 from a Devon female taken vi.1998. Further examples of the recessive ab. atratus Bailey of Eurodryas aurinia (Rott.) and a male Argynnis aglaja (L.) ab. post-fasciata Blaichier, captured Devon vi.1998.

Barrington, R. D. G.—Breeding experiments showing the multifactorial basis of three aberrations. Maniola jurtina (L.) ab. fracta Zweiglt, 2 females bred in an F2 generation of 118 insects. The original female (Dorset, July 1995) was transitional to fracta. The F1 of 80 produced a graded series from type to specimens with narrowed
hindwing median bands, but no \textit{fracta}. The F\textsubscript{2} was similarly graded but with some specimens transitional to and a small number of fully developed \textit{fracta}. \textit{Pyronia tithonus} (L.) ab. \textit{multiocellata} Ober. a selection of specimens from the F\textsubscript{2} of a \textit{multiocellata} female from Devon, 1995. The F\textsubscript{1} of 49 graded from type to weak \textit{multiocellata}. The F\textsubscript{2} of 90 was similarly graded but with more extreme \textit{multiocellata}. Some females also showed ab. \textit{lanceolata} Leeds on the underside hindwings. \textit{Pieris napi thomsoni} (Warren) ab. \textit{fasciata} Kautz bred in the F\textsubscript{2}–F\textsubscript{5} generations from an original female transitional to \textit{fasciata} captured in the outer Hebrides in 1997. Inbreeding produced stronger marked specimens with each generation. From the F\textsubscript{2} onwards siblings showed a reluctance to pair and only one pairing was achieved each time to produce the F\textsubscript{3}, F\textsubscript{4} and F\textsubscript{5} generations. F\textsubscript{4} females were easily paired with wild type Dorset males. This subspecies is generally single brooded; however it was possible to bring most of each brood through by rearing under constant light.

Other bred specimens included an extreme \textit{Melanargia galathea} (L.) ab. \textit{nigricans} Culot (Plate 1, Fig. 10) exhibited with two wild-caught females similar to the original parent. 50% of the brood were \textit{nigricans}. \textit{Celastrina argiolus} (L.) ab. \textit{lilacina-lata} Tutt, with darker blue shading and heavy dark borders, one of only 6 butterflies to emerge from 120 wild larvae, the remainder being parasitised.

Wild-caught specimens included an extreme, and mint, male \textit{Argynnis aglaja} (L.) ab. \textit{wimani} Holmgren (Plate 1, Fig. 12) captured in Ireland in 1998. The upperside largely black, the underside forewings rayed with black between the veins and the hindwings with the outer row of silver spots nearly obsolete, the median row almost black and the basal spots extended. This was spotted at about 6pm on a cool, breezy day as it was hawking up and down a bank looking for a place to roost for the night. Also from Ireland was a good series of \textit{Polyommatus icarus mariscolore} (Kane), including a female ab. \textit{post-obsoleta} Gillmer and a male ab. \textit{obsoleta} Gillmer, being entirely devoid of underside spotting. Another important aberration was a male \textit{Melanargia galathea} (L.) ab. \textit{rubra} Mosley (Plate 1, Fig. 6), a rare albinistic form. A short series of \textit{Maniola jurtina} (L.) from Dorset and Somerset in 1998, including 2 female ab. \textit{postmultifidus} Lipscomb and ab. \textit{fracta} Zweigl. A gynandromorph, left side female, right forewing male, right hindwing mixed. A curious female ab. \textit{irregularia} Leeds, the right forewing larger than the left and with streaks and splashes of brown and grey-brown colouration on the underside, the apical spot being split and with a large pupilled spot below.

Dennis, R. C.—A two-part exhibit, the first comprised of teratological specimens. Three \textit{Lysandra coridon} (Poda) each with a reduced hindwing size. \textit{Boloria selene} ([D & S.]) a male with both right-hand wings reduced in size by about a third. A female \textit{Celastrina argiolus} (L.) with small hindwings. A \textit{Maniola jurtina} (L.) with differing wing shapes and an apical spot missing. A \textit{Cynthia cardui} (L.) with both left-hand wings about half the normal size and with aberrant venation and markings.

The second part comprised three good wild-caught \textit{Aglais urticae} (L.), two ab. \textit{semilachnusoides} Pronin from Sussex and an ab. \textit{nigra} Tutt from Dorset.

Fensome, B.—Various specimens bred and captured in 1998, including: \textit{Anthocharis cardamines} (L.) 2 males with pale “orange tips” and a bred gynandromorph. \textit{Pieris napi} (L.) 2 ab. \textit{fasciata} Kautz and a dwarf female. \textit{Pararge aegeria} (L.), a male lacking white spotting. \textit{Coenonympha pamphilus} (L.), a pair of ab. \textit{caeca} Ober. the female with unusual pale markings (Plate 1, Fig. 5). \textit{Pyronia tithoms} (L.), 3 female ab. \textit{anticerassipuncta} Leeds and a male ab. \textit{obscurior} Schultz.

Harmer, A. S.—An interesting series of \textit{Thymelicus acteon} (Rott.) ab. \textit{alba} Bolton, or ab. nov?, comprised of 3 pairs caught in Dorset. Fresh specimens did not
accord with the descriptions of any known acteon aberrations; however one female kept for breeding in its worn state fits the description of ab. alba (no description exists for the male). It would seem highly likely that this series represents both male and female ab. alba. Further research is being undertaken.

**Polyommatus icarus** (Rott) ab. radiata Courv. a good pair, bred from the combined stock of R. C. Revels and the late L. D. Young. *Pararge aegeria* (L.) ab. cockaynei Goodson, bred ex Lymington female. The larvae kept indoors and given extended artificial daylight length.

Further results of breeding *Aphantopus hyperantus* (L.) ab. lanceolata Shipp showing F3 specimens; these were not noticeably different to the F2, despite selective pairings. An extreme female was captured in the garden from stock released in 1997. Also exhibited were 2 females being combined ab. lanceolata and ab. arete Müller. In 1996 pairings were taken between male lanceolata and female arete, the F2 comprised of 120 specimens, 84 type, 24 arete, 12 lanceolata and the two combined arete/lanceolata which were amongst the last to emerge.

**Hall, P. R. & Kemp, R. J.** — A female specimen of the lycaenid *Virachola antalus* (Hopffer). This was reared January 1998 from one of a dozen larvae found during November 1997 in peaches imported from Mpumalanga, South Africa, at the airfreight handling depot, Colnbrook, Bucks. For further information see Foreign Lepidoptera section.

**Jones, A. M.** — *Eurodryas aurinia* (Rott.), specimens bred in 1998 from stock maintained for the last 6 years. A male ab. melanoleuca Cabeau, and an extreme female ab. sebalphus Schultz bred under normal conditions. A bilateral gynandromorph (Plate 1. Fig. 8), bred 1.vi.1998.


**Meredith, S. L.** — Photographs of two aberrant *Polygonia c-album* (L.), both taken in the same Northants. woodland. The first with suffused hindwings seen on the 19.vii.1998, the second an extreme ab. reichenstettensis Fettig, seen on the 21.vii.1998: this specimen had a strongly aberrant underside, the “comma” forming a malformed “D”.


**Parker, M.** — A female *Lycaena phlaeas* (L.) ab. cuprinus Peyer. taken 30.viii.1998 in the Hurn Forest area, Dorset.

---

**PLATE 1 ANNUAL EXHIBITION 1998**

REVELS, R. C.—Continuing results of breeding Aphantopus hyperantus (L.) ab. lanceolata Shipp (originally from A. S. Harmer). About 15% of specimens bred showed an increased expression of the lanceolata characteristics, being more extreme than any others known to the exhibitior (this shows different results to those of A.S.H.).

Two examples of Pieris napi (L.) bred in an F₂ from a heavily marked female, taken 1997, showing a tendency towards albinism (Plate 1, Fig. 1). Further breeding is planned for 1999. A series of Colias croceus (Geoffroy) f. helice Hübner, showing a range of colours from normal yellow to pale yellow and white. These originated from a Beds. female taken in June 1998; the F₁ produced 50% helice in August.

Results of breeding Melanargia galathea (L.) ab. eraskei Tubbs. A previously exhibited breeding experiment dating from 1974–79 and important in showing that eraskei is caused by a dominant gene.


SOFTLY, R. A.—A specimen of Greta morgane oto (Hewitson), taken at Hill Garden, Hampstead Heath, by the gardener Mr Les Willis. This species is a resident of Central and South America, and is commonly bred in butterfly houses in this country; it is likely that it is an escapee. The specimen was identified by G. Beccaloni and W. J. Reynolds of the Natural History Museum.

STOKES, D.—An interesting selection of Polygonia c-album (L.) undersides, some with long white “comets” replacing the usual “comma” (Plate 1, Fig. 9); these had less extreme upperside markings than those that had retained the “comma”, bred from heat shocked pupae. A pair of Thecla betulae (L.) from cold shocks, with reduced hair lines on the undersides. Quercusia quercus (L.), showing dark “striata” marks moving in towards the discoidal spots from the submarginal band, bred ex ova. A captured second brood female Pieris napi (L.) with the twin forewing spots missing (Plate 1, Fig. 4).

TEBBUTT, P.—Heat shocks on freshly formed pupae resulted in various named melanics. Inachis io (L.) ab. prochnovi Pronin., ab. antigone Fischer, ab. exoculata Weymer, and ab. belisaria Oberthur. Polygonia c-album (L.) ab. obscura Closs., ab. suffusa Frohawk and 2 ab. reichenstettiensis Fettig. Vanessa atalanta (L.) specimens transitional to ab. klemensiewici Schille. The highlight of wild-caught and naturally bred specimens was a bilateral gynandromorph of Lycaena phlaeas (L.) (Plate 1, Fig. 2), also an Aphantopus hyperantus (L.) with the right-hand hindwing underside predominantly black with yellow lines. A bred female Thecla betulae (L.) ab. unistrigata Schultz (Plate 1, Fig. 7), from wild ova.

Also exhibited were two all-blue Plebejus argus caernensis (Thompson) ab. splendidia Thompson from North Wales. A short series of Coenonympha tullia polydama (Haworth) and davus (Fabr.) from Lake District sites showing a wide range of variation. Selected aberrations of Pararge aegeria (L.) bred from hibernating pupae brought indoors in December and emerging over a 3 month period, including ab. parviocellata Lempke, ab. saturator Crumbrugge, and ab. cockaynei Goodson.

YOUNG, D.—Colias croceus (Geoffroy) from Berkshire, bred from a strong colony found in a large field of lucerne in 1996. Coenonympha tullia scotica (Staudinger) and Erebia epiphron scotica (Cooke) from Ben Lawers, and Trinafore, Perthshire, vii.1998.
BRITISH MACROLEPIDOPTERA


BAKER, P. J. — Aberrations and migrants taken in Devon including: Eublemma parva (Hb.). West Hill, S. Devon, 8.vii.1998.


BROTHERIDGE, D. — Migrants taken in 1998, dates and localities not given: Rhodometra sacaria (L.) and Mythimna abipuncta ([D. & S.]).


CLARKE, J. — Lepidoptera taken or reared in 1998, including: Conistra rubiginea ([D. & S.]). St. Briavels, W. Glos., 1.iv.1998; Eublemma ostrina (Hb.) ab. carthami, reared from larva, Slapton Ley, S. Devon, 22.viii.1998; Aixyla putris (L.), albinistic form, Bodmin Moor, E. Corn.; Diaphora mendica (Cl.), cross between f. rustica Hb. and typical English form.


DAWSON, J. — Moths from Cambridgeshire, dates and localities mostly not given: Philalapteryx virgata (Hufn.) and Eupithecia pinpinellata (Hb.), south Cambs. chalk area; Xestia rhomboidea (Esp.), throughout; Cryphia muralis (Forst.) f. impar (Warren), Cambridge; Lithosege griseata ([D. & S.]), Fulbourn, Cambs., 26.v.1997; Idaea rusticana atrosignaria Lempke; Scopula marginepunctata...
(Goeze); *Spaelotis ravida* ([D. & S.]), 9.viii.1997; *Polymixis lichenea* (Hb.), 6.x.1998.


Halsey, J. — *Autographa gamma* (L.), four examples from a migration in v.1998 showing unusual Y markings.

Halstead, A. J. — Larvae of *Cossus cossus* (L.) from Wisley Gardens, Surrey, ix.1998. Those exhibited had been found in a planted birch, and were very likely to have been imported, possibly from Germany. Two full grown larvae were also found which had emerged from an oak and were considered native — the first Wisley records for at least 26 years.


---

**PLATE 2 ANNUAL EXHIBITION 1998**

HENWOOD, B.—*Spodoptera exigua* (Hb.). Abbotskerswell, S. Devon, 2.x.1998. An aberration of *Arctia caja* (L.), Kennack Sands. W. Corn., 1.viii.1998 (Plate 2, Fig. 10).

JENKINS, A.—Moths taken in 1998 including: *Lygephila craccaea* ([D. & S.]), at mvl, N. Devon: *Crocallis elinguaria* (L.), Thorpeness, E. Suff., an aberration superficially resembling *Crocallis dardoinaria* Donz. (Skinner, 1998, plate 43); *Bembecia miscelformis* (Esp.), reared from pupa, S. Devon; *Diaphora mendica* (Cl.) f. *rustica* Hb.; *Hadena caesia mananii* (Greens.), *Triphosa dubitata* (L.), *Callania tridens occidentalis* Cock., *Hadena perplexa capsophila* (Dup.), *Ondontognophs dumetata hibernica* Forder, all from the Burren. Co. Clare; *Hecatera dysidea* ([D. & S.]), reared from larvae from north Kent; *Sedina buettneri* (Hering), flying at dusk, Dorset: *Laothoe populii* (L.), orange aberration, Thorpeness. E. Suff. (Plate 2, Fig. 12).


found in a supermarket. Melanic forms of: Cryphia domestica (Hufn.) and Acerioneta megacephala ([D. & S.]), Swindon, N. Wilts.; Idaea versers (L.), Durlston Head, Dorset, and extreme aberrations of Xanthorhoe fluctuata (L.), Swindon, N. Wilts., all n.d.

**Natural History Museum**—Some extreme varieties from the National Collection (R.C.K.): Tetheia or ([D. & S.]), ab. albingensia Warnecke, Sunderland, 1913, and ab. permarginata Hasebroek, Bromley, 1930; Archicearis parthenias (L.), ab. lutetia de Hennin, Chingford, and ab. obscura Prout, north Kent, 1908; Cyclophora annularia (Fab.), ab. obsoletea Riding, Honiton, 1899, and ab. sertaria Dannehl, Dover, 1877; Launpropyryx suffumata ([D. & S.]), ab. porriform Robson & Gardner, Dover, 1896, and ab. picata Steph., Barnard Castle, 1917; Chiasmia clathrata (L.), ab. obsoletissima Cock., Gibralter Point, 1971, and ab. fasciata Prout, Hazeleigh, 1902; Cephis advenaria (Hb.), ab. fulva Gillmer, east Surrey, 1928; Pseudopanthera macularia (L.), ab. quadrinaculata. Highgate, ab. fuscaria Stdgr., Abbots Wood, 1886, and an asymmetrical aberration, West Wickham Wood, 1877; Ematurga atomaria (L.), ab. praecella Cock., Lancing, Sussex, 1939, ab. unicoloraria Stdgr., Burnley, Lancs., 1914, and ab. dentaria Stauder, east Kent, 1920; Gnaphos obscurata ([D. & S.]), ab. bicinctata Fuchs, Lewes, 1909, ab. obscurata Prout, New Forest, 1900, ab. argilacearia Stdgr., Babbacombe, S. Devon, 1903, ab. fasciata Prout, Folkestone, 1921; ab. saturea Prout, New Forest, 1899; and ab. calceata Stdgr., Lewes, 1921; Clostera curvata (L.), ab. webbiana Rebel, nr. Faversham; Lymantria monacha (L.), approaching ab. atra Linstow, New Forest, 1903 (possibly cross-bred); Xestia c-nigrum (L.), ab. albinotica Cock., Harpenden, Herts., 1950, and an asymmetrical aberration, Rye, Sussex, 1954; Dichonia aprillina (L.), ab. semivirgata Cock., Elgin, 1895, and ab. bruneoniuxta Culot, Yorkshire, 1917; Conistra rubiginea ([D. & S.]), ab. modestissima Ob., Camberley, 1899; Polycthis moneta (Fab.), ab. maculata Lempke, Boxmooor, 1912; Catocala nuptia (L.), ab. brunneescens Warren, Mitcham, 1892.


Plant, C. W. — An exhibit of Abrrostola spp. Four species occur in Europe: A. tripartita (Hufn.), A. triplasia (L.), A. asclepiadis ([D. & S.]), and A. agnorista Dufay; of which examples of the first three were shown. It was suggested that either of the latter two might occur in Britain, examination of the male genitalia being the most reliable method of certain identification. Moths captured in 1998: Aleis repandata (L.) ab. conversaria Hb., Froxen Copse, Arne, Dorset, 7 & 28.vi.1998; Xylena vetusta (Hb), Stanmore Common, Middx., 16.x.1998, captured by J. Hollingdale — the first VC21 record since 1880; Euphia biangulata (Haw.), M.O.D. training area, Kirk., 5.vii.1998—new to Scotland. Hecatera dysodea ([D. & S.]), examples from Kent, Spain, and France.


WARING, P. — An exhibit of ear moths, *Amphipoea* spp., comprising the four British species with notes on distribution and distinguishing features. Dissection of the genitalia is necessary for accurate identification.


WEDD, D. J. — Specimens taken or reared in England, Scotland, Ireland & Wales, 1997–1998: (i) *Cyclophora alpunctata* Hufn. A series of the large Scottish form from Loch Rannoch. (ii) *Enargia paleacea* Esp. A typical male and a short series from a crippled female found on a tree near Kincraig. (iii) *Eriopygodes imbecilla* F. Size reduction after 6 generations bred from a Monmouthshire female. (iv) *Odontoglossophos dumetata hibernica* Forder. A typical pair and a fourth generation bred from a very small Burren female. (v) *Diaphora mendica* C. f. rustica from the Burren, darkening after six generations in captivity, compared with two intermediate males from Rossclare. (vi) *Fureola bicuspis* Borkh. Two specimens bred from a new (private) Buckinghamshire locality. (vii) *Noctua comes* Hb. A bred series from the Findhorn, Morayshire, showing something of the colour-range in this species over two generations. The original parents (found in cop.) were male blackish, female reddish.


**British Microlepidoptera**

[Nomenclature and classification follows the checklist of Bradley 1998]


BRITTON, M. R.—*Phyllonorycter leucographella* (Zell.). mines found in several localities in York and in Leeds and appearing to be more prevalent on sheltered bushes; *Cacoxenischeria prominibana* (Hübn.), several males seen in September 1998 in York, a female caught Haworth, York, 24.ix.1998 and males seen several days later. *Cataplecta profugella* (Staint.), bred from larvae found on 14.viii.1997, emerging 11.vi.1998. Larva was pale ground colour with reddish-brown markings and louse-shaped. It was found while searching for *Eupithecia pimplinellata* (Hübn.) larvae on burnet saxifrage near Askham Bog, York.

BROTHERIDGE, D.—Five species from Wiltshire: *Coleophora trigeminella* Fuchs; *C. salicorniæ* Wocke; *Dasystema saliciella* (Hübn.); *Isophricthis striatella* (D. & S.); *Euleioptilus carphodactyla* (Hübn.).


DAWSON, J.—a series of species local to the south Cambridgeshire (VC29) chalk area; *Phlyctaenia perlicidalis* (Hüb.) and *Nascia cilialis* (Hüb.) from the spring-fed fens within the chalk area. Also exhibited an unusual species to the county. *Platytes alpinella* (Hüb.) on 10.viii.1998.

DOBSON, A. H.—*Phyllonorycter leucographella* (Zell.): specimens bred from mines collected from *Pyracanthis* in the Brighton Hill district of Basingstoke (VC12) on 17.i.1998. New county record for Hampshire.


HART, C.—*Stenoptilia islandicus* (Staud.) reared from mossy saxifrage (*Saxifraga hypnoides*) collected in Ben Lawers area. The foodplants of *S. islandicus* in Iceland
and Scandinavia are considered to be *Saxifraga cespitosa* and *S. adscendens*. However, only *S. cespitosa* occurs in Britain and does not appear to occur in the Ben Lawers area where the moth is found. Three days of searching, together with Bernard Skinner, resulted in a single pupa attached to the tip of mossy saxifrages at about 800 m. The surrounding plant was damaged to the extent that the terminal buds of surrounding shoots had been eaten out, which is typical of the feeding pattern of this larva. A small very pale, female specimen emerged.


Heckford, R. J.—*Rhigognosis incarnatellata* (Staud.) Specybank VC96 10.ix.1998 (with M. R. Young); *Bisellachista serricornis* (Staint.), Trowlesworthy Warren, Devon VC3 bred from stems of *Eriophorum angustifolium* 12 & 22.vii.1998, new to Devon. British literature states the larva mines leaves of *Carex* sp.; this is probably wrong and these are probably the first British bred specimens; *Schiffermuelleria grandis* (Desv.), nr. Canonteign Barton, Devon VC3 bred from dead stems of *Hedera helix* 20.iv. & 4.v.1998; *S. subaquilea* (Staint.), Haytor. Devon VC3 bred from cocoon amongst dead *Vaccinium myrtillus* 16.v.1998, never previously bred before as foodplant/life history had been unknown; *Monochroa horngigi* (Staud.). Elstead, Surrey VC17 bred from *Persicaria* sp. 22.v.1998 (with J.R. Langmaid), larva not previously found in the British Isles; *Gelechia senticetella* (Staud.) Canvey Island, Essex VC18 and Crayford, Kent and Dartford, Kent both VC16 bred from *Chamaecyparis lawsoniana* 8.vi.1998, 29.vi.1998 and 3.vi.1998 respectively, larva not previously found in the British Isles; *Oegoconia caroadjai* Popescu-Gorj & Căpuş, Plympton, Plymouth, Devon VC3 (exhibitor’s garden) bred from dead leaves of *Juniperus* sp. 23.vi.1998; South Benfleet. Essex (VC18) bred from dead *Quercus* leaf 15.vii.1998; *Oletheutes aurofasciana* (Hawv.). Hembury Woods, Devon VC3 24.vii.1998, at light (with B.P. Henwood); *Lobesia botrana* (D. & S.), Marsh Mills, Plymouth. Devon VC3 bred from plum bought at local supermarket 6.viii.1998, moth emerged 2.ix.1998, new to Devon; *Bactra lancealana* (Hübhn.), Trowlesworthy Farm. Devon VC3 bred from stem of *Eriophorum angustifolium* 29.vi.1998, previously unrecorded British foodplant; *Crambus perllo* (Scop.), specimen close to ssps. *monochromella*, Aviemore VC95. 9.ix.1998; *Eudonia truncicolella* (Staint.), Brisworthy Burrows, Devon VC3 bred from *Campylopus* sp. 5.vi.1998; Trowlesworthy Warren, Devon VC3 bred from *Dicranum scoparium* 23.vii. 29.vii and 7.viii.1998; Ditsworthy Common. Devon VC3 bred from *Dicranum scoparium* 1.viii.1998; Gutter Mire, Devon 26.viii.1998. These are areas of Dartmoor with a few *Crataegus* bushes and no woodland. Specimens determined as *E. murana* (Curt.) from similar habitats in southern England may well be misidentified *truncicolella*; *Stenoptilia zophodactylus* (Dup.), Tulloch VC96 10.ix.1998 (with M.R. Young) new to VC96.


Higgs, G. E.—*Amblyptilia acaenthilacula* (Hübn.) and *A. punctidactyla* (Haw.) bred from larvae feeding on the flowers of hedge woundwort (*Stachys sylvatica*) at sites in Yardley Chase and Pitsford Nature Reserve, Northants.

KNIll-JONES, S. A.—A selection of microlepidoptera from Freshwater, Isle of Wight.


MANNING, D. V. & RICHARDSON, J. A.—Pterophorus galactodactyla (D. & S.), autumn and spring feeding of the larvae on Arctium minus spp. minus (lesser burdock), a newly recorded host plant.


2. Species taken or bred from the Burren, Ireland 17–22.v.1998. Aethes piercei Obraz. one of a number seen in Kinvara; Crambus lathoniellus (Zinck.), the brown Burren form of this species was seen at most localities visited. Microstega pandalis (Hüb.), two of the three specimens that came to light at Kinvara; Anania funebris (Ström.), the Irish form was taken at Cappaghmore and Loch-na-Bron, 22.v.1998.


**PLANT, C. W.**—*Tebenna micalis* (Mann) examples from among many seen flying on SW coastline nr Kirkcudbright. First records for Scotland.


**SHARPE, P.**—Plume moths from Northants.


**Young, M. R.—** 1. Some scarce Scottish species. *Lampronia capitella* (Clerck): the Aberdeenshire locality for this species was destroyed in 1997. Are there any other current British sites for the species? *Olethreutes olivana* (Treits.), examples of the typical Scottish form compared with a smaller darker Yorkshire form. *Achromia grisella* (Fab.) Purgavie, Angus, 7.vii.1998, coll. R. Knill-Jones. This species has recently been very scarce in Scotland.


**Foreign Lepidoptera**

**Bailey, K. E. J.—** *Danaus chrysippus* L. taken near Kyrenia, North Cyprus, 10.x.1998. The exhibitor stayed in the area from 6.x to 16.x. A single example was noted on 8.x followed by increasing numbers along the north coast over several days. In some areas it became the most prolific butterfly. It was seen from the Kyrenia area as far east as the Kantara Pass. By 14.x it was becoming scarce, although several were seen in the Famagusta area on the south coast. They appear to have been part of a southward migration from Turkey. During this period there were frequent strong northerly winds. The exhibitor was resident in Cyprus during 1960–1962, and travelled widely, yet never saw a single example.

**Corley, M. F. V.—** (1) *Herpetogramma licarsalis* Walker, a Pyralid new to Europe (Plate 2, Fig. 13). A single specimen of this species was taken near Mexilhoeira Grande in Algarve, Portugal, in x.1997 by Adrian Gardiner, and subsequently named by Michael Shaffer at the Natural History Museum.
H. licarsalis is a widespread species in the Old World tropics. The specimen was assumed to be a casual migrant. However, in ix.1998, MFVC found the moth to be frequent in a number of sites in central and western parts of Algarve: the eastern part was not visited. Single specimens were subsequently taken at Santo André on the west coast south of Lisbon, and in the Serra de São Mamede on the border with Spain, almost directly east of Lisbon. The larval foodplant in Portugal is not known. Since it was clearly well established in Southern Portugal, MFVC predicted that it would soon be found in Spain and Britain. In fact, Spanish specimens were being exhibited simultaneously by Hall (q.v.) and a single licarsalis soon turned up in Britain.

(2) Portuguese Sterrhinae. This subfamily of the Geometridae is one of the groups of Lepidoptera which show the greatest contrast between Britain and southern Europe. At present 96 species (including 59 Idaea) are known from Portugal compared with 42 (including 20 Idaea) from Britain, and this British total can only be reached by the inclusion of rare migrants, adventives and doubtful records. These moths thrive in the hot dry summers of southern Europe. The larvae can live on withered leaves, which are virtually the only leaves of herbaceous plants to be found in the southern summer. During the hottest and driest part of the year, from June to mid-September, temperatures can reach 40°C. Few noctuids are flying but small flimsy geometer are abundant.

Some species are very common and are found almost anywhere, but others are more local and are clearly ecologically specialised, though it is usually difficult to see what the requirements are. Some species are univoltine, but others have two or more generations in the year, giving rise to successively smaller and smaller moths as the pabulum desiccates. Some species vary very little, but a number have two colour forms and some show greater variation. Presence or absence of a median shade between two cross-lines occurs in a few species, as in Britishaversata. I. beleniata Mill., although not varying greatly in Portugal, is of a quite different form from those found in most of Spain and France, which resemble diminidiata.

New species continue to be described from the Iberian Peninsula. Six Portuguese species of Sterrhinae were described in the 1970s or 1980s, and six other species have been added to the Portuguese list in the last eight years. More could await discovery. There is uncertainty about the taxonomic status of a few species. I. minuscularia Ribbe may be only a subspecies of I. seriata Schrank, and the position of I. vulpinaria H.-S. (supposed to be a synonym of I. rusticata D.&S.) remains in question.

The identification of species in such a large genus as Idaea can be a problem. The examination of genitalia is often necessary, not just for certainty, but to get a pointer to possible identification. The genitalia of many species have not been figured, or are incompletely figured, even for males, and few females are figured at all. Culot is still useful for identification of the more distinctive species, but cannot be relied upon as so many species have been described since it was published. However, they do get easier to identify as the number of species one has not yet seen diminishes.


(3) Portuguese Mophsidae. Until recent times the family Mophsidae included a number of groups of genera which are now treated as separate families. These families are Batachedrididae, which is not represented in Portugal, although Batachedra parvulipunctella Chretien was recorded erroneously, Agonoexenidae, with only two species in Portugal, Mophsidae in the strict sense, which is also poorly represented, mainly because of the scarcity of the willowherb family (Onagraceae), and Cosmopterygidae, which is relatively well represented.

(i) Agonoexenidae: Tetanoentoria buvati Baldizzone. an autumn-flying species found in evergreen oak-woods. The foodplant is unknown, but all Agonoexenidae species for which the pabulum is known have larvae living in bark, in twigs or in berries. T. albanica Rebel, known from a single disjunct site in Portugal, but otherwise found very locally in Central and Eastern Europe.

(ii) Mophsidae: Urodeta hybennellha Stdg. a cistus-feeding species. Mophsa miscella D.&S., which appears to be attached to Halimium rather than Helianthemum, and M. epilobiella Roemer, which feeds exactly as it does in Britain. Besides the three species exhibited, M. subdivisella Bradley is recorded, but requires confirmation.

(iii) Cosmopterygidae: This is the largest family with 17 species recorded.

Although many of them have metallic markings, the majority are night-flying. The exhibitor reported that one of them, Alloclita recisella Stdg., appeared in small numbers at torch-light as soon as his mercury vapour light was turned off, whereas none had been seen before. 15 of the species were exhibited: Gisilia streodoxa Meyr., larva on Accacia, Alloclita recisella Stdg. life history unknown. Vulcancilla grabowiella Stdg., larva in a case on leaves of Lavandula. V. rosmarinella Wals., a leaf-miner on Rosmarinus. V. fiordalisa Petry, larva possibly on Helichrysum. Eteobalea beata Wals. & E. intermedia Riedl. which as a group are reported from roots of Linaria & Antirrhinum. E. dohrnii Zell., larva in the roots of Plantago albicans. Isidiella divitella Const., larva in spun leaves of Helichrysum. Cocidiphila ledereriella Zell., larva reported from a number of plants, perhaps feeding on dead leaves. Reared by the exhibitor from pupae in seed capsules of Cistus. C. gerasimovi Danilevsky, larva on eggs of coccids. Pyroderces argyrogrammos Zell., larva in seed-heads of various thistles. Cosmopteryx crissicercella Chretien, life history unknown & C. pulcherrimella Chambers, a leaf-miner on Parietaria (Urticaceae). The two species not available for exhibiting were: Cosmopteryx zieglerella Hb., a leaf-miner on Humulus (Urticaceae), and Pancalia latreillella Curtis, mining petioles and rootstocks of Viola.

Hall, N. M. — (1) A comparison of Menophra abruptaria Thunb., M. japygiaria Costa & M. nycthemeraria Geyer, three of the commoner Menophra species in Europe. The display included upper sides and undersides of normal and melanic specimens of abruptaria.


(3) Moths from Spain: (i) Pays Basque: From Parque Garaio. Vitoria, Alava, 26.v.1998: Hyphoraia dejecani Godart (a Spanish endemic, which is in the red list for Spain,

(4) Moths from Fuerteventura. Canary Islands: From Oliva Beach Apartments, Corralejo: *Eudonia parviangusta* Nuss,Karsholt & Meier, iii.1998 (Not in the Klimesch & Arenberger checklist for the Canary Islands [K & A]). *Lamoria anella* D.&S., iii.1998 (not in K&A). *Dolcarthria bruguerialis* Dup., iii.1998 (Not in k&A). *Ancylosis arenosella* Stdgr. *Ancylosis imitella* Hampson, *Ancylosis convexella* & other *Ancylosis* spp. still to be identified. ii.1997 & iii.1998 (Species of *Ancylosis* were extremely common at the apartments. Most were *arenosella*, a narrow-winged species which is very variable with many beautiful forms. Most of the *Ancylosis* species that were not *arenosella* were *imitella*. The *imitella* were slightly smaller and had a black central stripe on the thorax which made them easy to pick out. The range of patterns was at least as great as those of *arenosella*. K&A list nine *Ancylosis* spp. for the Canary Islands most of which have variable wing patterns). *Agdistis bifurcatus* Agjo, ii.1997. *Agdistis pseudocanariensis* Arnbrgr, ii.1997. *Amblyptilia acanthadactyla* Hb., ii.1997. *Lantanophaga pusillidactylyus* Walker, ii.1997 (Plume moths were well represented at Corralejo in ii.1997, though hardly any were found in iii.1998).

(5) *Herpetogramma licarsalis* Walker from the Canary Islands & Spain. These were displayed as “An unidentified Pyralid moth, presumably close to *ruralis* (Spilomelinae)”. It was first encountered at Corralejo, Fuerteventura , xi.1997, where it was common and frequently found indoors, and then at Vera Playa, Almeria, 18.x.1998. However, M. Corley (q.v.) displayed what was clearly the same species found in Portugal in 1997, new to Europe, and his specimens had been identified at the BM (Nat.Hist). The species looks like a small dark *ruralis*, and males have a distinctive brush of black scales on the forewing costa, usually hidden on the underside.

(6) An unidentified noctuid moth: 3 specimens from Oliva Beach Apartments, iii.98. They appeared to be a species of *Powellinia*.

**KEMP, R. J. & HALL, P. R. — A “Playboy” new to Britain.** The first record of the South African Lycaenid butterfly *Virachola antalis* Hopffer. Peaches air-freighted to the UK from Mpumalanga (formerly part of the Transvaal) in South Africa during xi.1996 arrived at a handling depot in Colnbrook, Buckinghamshire. Inspection of the produce revealed frequent large entry holes originating at the calyx end of the
fruit and ending internally around the stone. Around a dozen larvae were recovered from these fruits. One pupated and finally hatched in 1.997 and was identified as a female of the lycaenid butterfly *Virachola* (formerly *Deudorix*) *antalus* (Hopffer, 1855). *V. antalus* is common in bush country throughout most of Africa except the southern tip. Its larval foodplants are varied and include bean pods and fruits of Leguminosae, Myrtaceae, Olacaceae. Umbelliferae and Rosaceae. In the case of the latter it can be a minor pest in orchards feeding on fruits of the peach and nectarine (*Prunus persica*). In South Africa its vernacular name is Brown Playboy presumably referring to the darker brown colour of the male and its fast and elusive habit. As far as the exhibitors are aware this is the first record for this species in Britain.


The butterfly fauna of Sicily is especially interesting as it is Mediterranean with Afroiberian and Balkan affinities, and also provides a refuge for alpine species which normally occur much further north. (i) *Melitaea aetheriae* Hb. (Afroiberian). (ii) *Anthocaris damone* Boisd. & *Spialia orbifer* Hb., both “Balkan”. *damone* was found almost wherever *Isatis tinctoria* (Woad) flourished in the Etna, Peloritani and Nebrodi ranges. *orbifer*, which appeared to be local and scarce, is a skipper which occurs eastwards from Austria and in the Balkan Peninsula, but is replaced by *Spiala sertorius* in Western Europe, including the whole of mainland Italy. (iii) *Cyaniris semiargus* Rott., an “alpine” species, from the Madonie Mountains which rise to nearly 2000m. (iv) *Cupido minimus trinacrae* Verity, *Melanargia Octantica pherusa* Bosd. & *Hipparchia aristaevus bichier* Fruhstorfer, three distinct Sicilian endemic subspecies. (v) *Meliticea athalia celadussa* Fruhstorfer & *Boloria eupholysyne* L., which reach their southernmost limits in Sicily. (vi) *Maniola jurtina* L., a splendid very large form.

**Martin, G.**— Lepidoptera from Madeira, 20.vii.98 to 2.viii.1998.

The main intention of the visit was to survey the Lepidoptera of the Ecological Parque of Funchal. The base was Casa do Barreiro (970 m) from where one to three 125 Watt mv traps were run every night. An mv trap was also used at Casa de Ariero (1593 m) for one night and in the Botanical Gardens in Funchal for two nights. Other records were obtained on day trips. 44 species of macrolepidoptera, 26 species of pyral and two species of plume moth were recorded which is just over half the total for the island (142 to date). Although the fauna of Madeira is small, many species or subspecies are endemic to either Madeira or Macaronesia (Azores, Madeira, Canaries & Cape Verdes). All identified species were exhibited: (Abbreviations: ME = Madeiran Endemic. MacE = Macaronesian Endemic B.-B. = Bethune-Baker)

Uresipha gilvata F., Botryodes diniasalis Walk., Mecyna asinalis Hb., Palpita unionalis Hb., Spodolea recurvalis F., Dupouchelia fovealis Zell., Herpetogramma bipunctalis F., Nomophila noctuella D.&S. Geometridae: Xenochlorodes nigibetula Woll. (ME), Cyclophora puppillaria Hb., C. maderensis B.-B. (ME), Scopula irrorata B.-B. (ME), Idaea maderae B.-B. (ME), Rhodometra sacraria L., Xanthorhoe rupicola Woll. (ME), X. centrostrigaria Woll. (Also found in N. America & Canaries), Eupithecia latipennata Prout (ME), Gymnoscelis insulariata Stt. (MacE), G. hindbladi Prout (ME), Menophra maderae B.-B. (ME), Ascotis fortunata Blachier (MacE).


Tennent, J. — Aberrant European and North African Butterflies: Two cases containing aberrant individuals collected during long periods in the field in 1991–1995 (without looking for aberrations), together with normal individuals for comparison. The exhibit consisted of some quite extreme examples of normally variable species and aberrant specimens of species in which variation is infrequent or unrecorded.

Hesperiidae: Pyrgus malvae L. A male with upperside forewing white spots extended and rayed (f. taras) (France 1995). Papilionidae: Zerynthia rumina africana Stichel Two specimens, one with extended black markings, the other asymmetrical with the left hindwing lacking black pigment (both Morocco, 1992). Pieridae: Colias hecla sulitelia Aurivilius A male with the orange-yellow upperside colour replaced by lemon yellow and a female with upperside submarginal markings reduced, giving it the superficial appearance of a lightly marked male (both Arctic Sweden, 1991).

Gonepteryx cleopatra cleopatra L. A sexual mosaic, primarily female but with a band of male coloration on the left upperside forewing costal margin (Morocco, 1993). Although sexual mosaics and gynandromorphs are rare in nature, a surprisingly large number have been reported among cleopatra. Zeiris eupheme maroccau Bernardi A male with pigment lacking from the upperside forewing apical orange patch (Morocco, 1992). Lycaenidae: Agrodiaetus thersites Cantener A sexual mosaic with the left side female and the right side female washed with male coloration (Spain, 1993). Aricia agestis cramera Eschscholtz A male with most underside spots obsolete (Morocco, 1992). Cigaritis zohra monticola Riley A female with underside
spots reduced or obsolete, and white ground colour extended (Morocco, 1992). Variation in this species is rare. *Cyaniris helena* Stgr One male with underside forewing spots obsolete (Greece, 1991). *Glaucopsyche melanops algirica* Heyne A male with basal spot of underside forewing series elongated to form a bar and a second male with underside forewing spots reduced and unhy spots obsolete (both Algeria, 1993). *Heodes alciphon melibaens* Stgr A male with most submarginal and postmedian spots obsolete (Greece, 1995). *Lysandra coridon caelestissima* Verity A male with underside spots obsolete. *L. punctifera* Ob. A series of five males and three females, with variation in underside spotting, ranging from “rayed” examples to a specimen with all spots except the uppertwing forewing discal spot obsolete (Morocco, 1991–4). *Plebejus argus hypochionus* Ramb. A male with underside submarginal spots elongated (rayed) (Spain, 1994). *P. idas lapponicus* Gerhard Two males with most underside spotting obsolete, and a female with all spots elongated (rayed) (Arctic Sweden, 1993). *P. martini martini* Allard A male with underside forewing spots reduced and unh spots obsolete (Algeria, 1992). *Plebejula atlantica* Elwes One male and two females with underside spots enlarged (Morocco 1992–3). Variation in this species is not often reported and females are rare in collections. *Pseudophilotes barbagiae* de Prins & van der Poorten Three males with most underside spots obsolete (Sardinia, 1991). *P. baton* Bergsträsser A male with underside spots obsolete (Corsica, 1991). *Zizzera karsandra* Moore Two males with some underside spots joined (rayed) (Tunisia, 1992). *Nymphalinae: Boloria napaea* Hoffmannsegg A female with the orange upperside markings dull and all black markings extended (Switzerland, 1995). *Eurodryas desfontainii* Godart A series of eight specimens exhibiting variation, often asymmetrical, mainly in respect of the confluence or absence of the upperside forewing median bands (Morocco, 1992–3), and a pair with the distinctive bright orange-red ground colour replaced by pale orange-yellow (Morocco, 1992). *Melitaea cinxia* L. Two males, one with upperside forewing black markings reduced and uph black markings extended and one with upperside black markings extended (Greece, 1991). *M. deserticola* Ob. A male in which many of the underside black markings are reduced or obsolete and the underside hindwing white ground colour extensive (Tunisia, 1993). *M. phoebe occitanica* Stgr A male with the underside forewing median markings absent and the underside hindwing median band obscured with black spots (Morocco, 1992). *Mesoacidalia aglaia lyvaetyi* Ob. A male with upperside black submarginal and postmedian markings extended (Morocco, 1993). *Satyrinae: Erebia palarica* Chapm. Two females, one with upperside postmedian ocelli enlarged and joined, the other with upperside ocelli obsolete and uph ocelli reduced to black spots in spaces 2 & 3 (Spain, 1994). *Maniola jurtina* L. A male with slightly deformed wings in which orange upperside markings are asymmetrical and replaced by off-white (Spain, 1993). *M. muraq* Ghiliani A male with orange upperside markings replaced by pale yellow (Sardinia, 1991). *Melanargia galathea lucasi* Ramb. A male with upperside dark markings extended (Algeria, 1992).

WEDD, D. J. — Species found during two visits to Jersey, Channel Islands, in late x.1997 and early viii.1998, both times in brilliant sunny weather: (i) *Dryobotla labecula* Esp. Widespread on *Quercus ilex* in late x.97 Captives laid numerous ova, but only after 5 or 6 days feeding on sugar water. Eggs were laid in neat rows along the veins of the leaves of potted *ilex* saplings. They hatched but did not feed successfully. Clearly, very soft new leaves are required. (ii) *Trigonotyphora flammula* Esp. One of the commonest species in x.1997 to light everywhere, even to street lamps. (iii) *Eumichtis lichenea* Hb. Very numerous and with little variation. (iv) *Lasiocampa trifolii* D. & S. Many males at MV on the west coast; fewer elsewhere. Very similar to the form found in SW England. No females seen. (v) *Tethea ocularis*
Hb. A distinctive second brood, viii.1998. (vi) Idaea degeneraria Hb. Newly emerged specimens, viii.1998, suggesting a second brood. (vii) Jodis lactearia L. Definite second brood; numerous. (viii) Lomaspilis marginata L. Very variable and very numerous. (ix) Selena lunularia Hb. A distinctive second brood. (x) Thaumetopoea processionea L. Resident on Jersey, flying mainly in August. Burrow took 3 females on 15.viii.1998, but none would lay. Perhaps, like castrensis L., the female only flies after laying. (xi) Coscina cribaria trivittata South. Numerous in several areas on the west coast. (xii) Euplagia quadripunctaria Poda 25–30 to MV every night, and also flying at dusk and by day. Less than 5% were of the yellow form, and the intermediate salmon coloured form was rarer still. (xiii) Agrotis vestigialis Hufn. A distinctive form; common. (xiv) Trachea atriplicis L. Resident on Jersey; almost certainly double-brooded. (xv) Agrotis crassa Hb. More than 400 came to MV in 4 nights in the Grouville area; yet crassa had previously been seldom seen on Jersey. Smaller numbers were seen elsewhere. The literature suggests that crassa likes marshy ground, yet the main locality for it on Jersey is the Grouville Golf Course. It is a lazy moth, flying little when captured. Several pairings were observed in the trap. (xvi) Ochropleura plecta L. An unusual ab.; abundant. (xvii) Mythimna albipuncta D. & S. One of the most abundant species with at least 3 broods a year; newly emerged imagines were flying in x.1997 and viii.1998. M. vitellina Hb. is also resident and numerous. (xviii) Acontia lucida Hufn. One to Gorey Castle Light, the other to MV at Grouville, mid viii.1998. Both of these sites are on the east coast. A third specimen was photographed on the west coast, at the place where Burrow took the only other specimen to be recorded on Jersey in 1995. Hence, possibly resident. (xix) Orthonama obstipata F. Very numerous in viii.1998 to MV, but also flying by day in gardens. (xx) Evergestis extinalis Scop. Recorded in four different localities in viii.1998. In numbers at Grouville. Previously only recorded twice from Jersey. (xxi) Hypena obsitalis Hb. Everywhere on Jersey; only one seen at MV, but flying at dusk and even in daylight. 40+ in a German bunker on the west coast, and larvae at all stages on pellitory (Parietaria) near the entrance. The Jersey specimens were decidedly larger than those of mainland England. (xxii) Cethosia hypsea Doubleday Captured in bright sunlight at the edge of woodland at Rosel Bay, 10.viii.1998. Identified by Mark Parsons & Phil Ackery at the BM (Nat.Hist.). An Indonesian species!

**Diptera**

There was an increase in the number of exhibitors this year and fewer exhibits in common with the annual meeting of Dipterists Forum, which was held two weeks later, for the first time in Cardiff. Several species recently recognised as new to the British fauna were included and the dead-wood-associated craneflies of the genera Ctenophora and Tanyptera appeared in several exhibits. Observations were made on the little-known C. ornata Meig., rarely recorded outside Windsor and New Forests, in both these areas.

ALEXANDER, K. N. A.—(1) Two nationally scarce flies found in Gloucestershire in 1998: Zodion notatum (Meigen) (Conopidae), Snows Farm, Slad, limestone grassland, 25.v; Dioxyina bidentis (Rob.-Des.) (Tephritidae), Ashleworth Ham, swept from Bidens tripartita, 13.ix.

(2) Highlights from the National Trust's Biological Surveys in 1998: Solva marginata Meig. (Xylomyidae). Leith Hill Place, Surrey, on Liriodendron trunk, 16.vii; Haematopota grandis Meig. (Tabanidae), Mwche saltmarshes, Carm., 17.viii.
CHANDLER, P. J.—The British species of *Anapausis* (Scatopsidae): examples of six species now known from Britain, with the addition of *A. rectinervis* Duda (from Dinton Pastures Country Park. Berks., male in fen/carr at south end of Mortimer’s Meadows. 27.v.1993, and Woodwalton Fen. Hunts., 24.v.1980, both sexes) and recognition that “*A. soluta* (Loew)” of previous authors comprises three species, of which both sexes can only be recognised by the structure of the terminalia, of which sketches of the salient features were also exhibited (these species are fully characterised and keyed by Chandler, 1999, *Dipterists Digest* (Second Series) 6: 1–19).


(2) Other RDB species found in 1998: *Thryridanthrax fenestratus* (Fall.) (Bombbyliidae), Hankley Common, Surrey, 19.viii; *Myennis octopunctata* (Coquebert) (Ulidiidae), Beddington Sewage Farm, Surrey, 22.viii; *Myopites inulaedysentericae* Blot (Tephritidae), a mainly coastal species found more widely in recent years, Ashtead Common, Surrey, reared from galls on fleabane (*Pulicaria dysenterica*), emerged 24.vi.

DOBSON, J. R.—The two species of Braulidae now known to occur in the British Isles: *Braula coeca* Nitzsch, a ubiquitous species in honey-bee (*Apis mellifera* L.) colonies, and *B. schmitzi* Örös-Pál, an addition to the British list, from a pooled sample—England and Wales, autumn 1994–spring 1995; its status is presently unknown.


HALSTEAD, A. J.—Some scarce or local Diptera found in 1998: *Stratiomyys potanida* Meig. (Stratiomyidae), St Gabriel’s Farm, Golden Cap, Dorset, 30.vi; *Chrysops sculpturalis* (F.) and *Atylotus fulus* (Meig.) (Tabanidae), Oakers Wood Bog, near Affpuddle, Dorset, 3.vii; *Thereva handlirschi* Kröber (Therevidae), Linn of Dee, S. Aber., 8.ix, on fence post; *Dioctria cothurnata* Meig. (Asilidae), Loscombe Nature

HARVEY, M. C.—(1) *Ctenophora ornata* Meig. (Tipulidae), Highstanding Hill, Windsor Forest, Berks., SU936744, 14.viii.1998, a photograph of a male found in a mercury vapour trap; while in captivity awaiting photography, it appeared to actively seek moisture from damp wood when provided with a decaying log; the fly was released on the next day, onto a beech (*Fagus sylvatica*) trunk, where it sat for about ten minutes before flying off into the undergrowth and coming to rest on shaded damp leaf litter.

(2) Diptera from Berks. and Oxon in 1998: *Metalinnobia quadrimagulata* (L.) (Limoniidae), Highstanding Hill, Windsor Forest, Berks., SU936744, 14.viii. feeding at sugar-rope applied to attract moths; *Rhagio strigosus* (Meig.) (Ragionidae), male at Upper Basildon, Berks., SU58427610, 3.vii, male at Ashampstead Common, Berks., SU578748. 2.viii, and female at North Unhill Bank, Berks., SU562832. 8.vii — altogether over 150 individuals seen, mostly at Upper Basildon site, from 3.vii to 3.ix. males congregating on tree trunks in “downlooker fly” fashion, females less easy to find but two occurred on house windows (the common *R. scolopaceus* (L.) was exhibited for comparison); *Platysteirus occultus* Goedl. de Tiefenau, Maibach & Speight (Syrphidae), Chelsey Marsh. Berks., SU598854. 5.viii; *Chetostoma curvinerve* Rond. (Tephritidae), Kingwood Common. Oxon. SU695825. 21.vi (further details are published elsewhere as indicated under Exhibit by B. Formstone above).

HAWKINS, R. D.—A selection of the more spectacular and interesting flies collected during 1998 at Bagmoor Common, Surrey (SU9242), a Wildlife Trust reserve consisting mostly of birch and pine woodland, acid grassland, bracken and restored heathland. *Tanyptera atrata* (L.) (Tipulidae), 15.v, black and brown forms of male flying around stump of dead birch; *Asilus crabroniformis* L. (Asilidae), 2.viii, female; *Dioctria oelandica* (L.) (Asilidae), 23.v; *Eutolmus rusticarius* (Meig.) (Asilidae), 2.viii. female; *Pipiza bimaculata* Meig. (Syrphidae), 23.v, female beaten from hawthorn; *Cheilosia scutellata* (Fall.) (Syrphidae), 29.viii, female hovering over mushroom believed to be *Boletus scaber*; *Eupeodes latihumulus* (Collin) (Syrphidae), 29.viii. female at flowers of heather, *Calluna vulgaris*; *Gynnosoma rotundatum* (L.) (Tachinidae), 23.v, male.

HODGE, P. J.—Eleven species of Diptera from southern England in 1998: *Paracrocera orbiculus* (F.), *Ogodes gibbosus* (L.) and *O. pallipes* Latr. (Acericriderae), Little Langford Down. Wilts., SU0434. 4.vii, all three British species of the family swept from chalk grassland; *Platypalpus luteolus* (Collin) (Hybotidae), Llangua, Gwent, SO388254, swept off bank of River Monnow. 3.vi; *Rhaphomyia gibba* (Fall.) (Empididae), Eelmoor Marsh SSSI. N. Hants. SU814534. 28.vi; *Hilara lugubris* (Zett.) (Empididae), Fleet Pond LNR. N. Hants., SU8254. 16.vi, female
swept from tree foliage above shaded stream; *Pelecocera tricincta* Meig. (Syrphidae), Eelmoor Marsh SSSI, N. Hants, SU840535, 28.vi. swept off bog myrtle (*Myrica gale*) in wet heathland, and Parkhurst Forest, Isle of Wight, SZ4790, 29.vi. heathy ride in young conifer plantation; *Trypeta artemisiae* (F.) (Tephritidae), The Moors NR, Bishop’s Waltham, S. Hants, SU559169, 18.vi. female swept off osier (*Salix* species); *Urophora spoliata* (Hal.) and *Terellia vectensis* (Collin) (Tephritidae), Afton Down, Isle of Wight, SZ3685, 26.vii. on sawwort (*Serratula tinctoria*) near cliff-top; *Terellia winthemi* (Meig.) (Tephritidae), Colley Hill, Reigate, Surrey, TQ2452, 12.vi. on wolted thistle (*Carduus acanthoides*).


**Perry, I. — Uncommon Diptera found in 1998: Hilara hybrida* Collin (Empididae), Ballinlug Island, River Tummel, Perth., 5.vi; Syntorina filiger Verrall (Dolichopodidae), Snettisham, Norf., 25.vii. swept from brackish marsh; Cephalops perspicus (de Meijere) (Pipunculidae), Holme Dunes, Norf., 8.viii. swept from *Phragmites australis* in dune slack; Cheilosia griseiventris Loew (Syrphidae), Holme Dunes, Norf., 8.viii. edge of dune slack, and Snettisham, Norf., 15.viii. Sphegina sibirica Stackelberg (Syrphidae), Black Wood of Rannoch, Perth., 2.vi. and Balnaught, Inv., 10.vi; Goniglossum wiedemannii (Meig.) (Tephritidae), Holme Dunes, Norf., 18.vii. swept from *Byronia dioica*: Mypites imulaadsenteriae Blot (Tephritidae), Holme Dunes, Norf., 8.viii. swept from *Pulicaria dysenterica* at edge of dune slack; Campiglossa producta (Loew) (Tephritidae), Holkham, Norf., 2.viii. and Studland, Dorset, 29.vi. both swept from dunes; Parochthiphila coronata (Loew) (Chamaemyiidae), Holme Dunes, Norf., 11.vii and 8.viii. swept from dunes; Platycephala umbraculata (F.) (Chloropidae), The Spittles, Dorset, 28.vi. swept from *Phragmites australis*: Fannia tuberculata (Zett.) (Fanniidae), Linn of Dee, S. Aber., 31.v.

**Plant, C. W. — (1) Possible mimicry between hoverflies (Syrphidae) and other flies: possible cases of mimicry where neither partner is apparently a danger to
predators, but the apparent mimicry extends beyond coloration to include behavioural traits: (a) *Lejops vittatus* (Meig.) common around Lake Balaton, Hungary. 17.v.1997, and an unidentified sarcophagid fly from the same site, which behaves similarly and in flight looks almost identical to the hoverfly; (b) *Eristalis arbustorum* (L.) and *E. horticola* (De Geer), British specimens, and *Ectophasia crassipennis* (F.) (Tachinidae), Razae d'Eymet, France. 21.v.1996, common on road verges with both *Eristalis* species and it was necessary to net the flies to tell them apart; (c) *Eristalis sepulchralis* (L.), a British specimen shown with an unidentified calyptrae from southern France, ix.1997, both species abundant on white umbels and the calyptrae also observed to hover well.

(2) Some common Hungarian hoverflies (Syrphidae), including some considered uncommon or rare in Britain, which are commonly encountered in suitable habitat in Hungary: *Anasimyia interpuncta* (Harris), abundant in flood-plains of the Danube; *Brachyopa dorsata* Zett., common in ancient forest; *Brachypalpoides lentus* (Meig.); *Brachypalpus valgus* (Panz.); *Caliprobola speciosa* (Rossi), very common in beech forest where it exhibits a territorial display flight in rays of sunlight above beech stumps, also taken in a Malaise trap amongst Salix-invaded reeds at the edge of Lake Balaton; *Chalcosyrphus eumotus* (Loew), in damp ancient woodland; *Cheilosia canicularis* Panz., frequent in woodland; *Chrysotoxum elegans* Loew; *C. festivum* (L.); *C. vernale* Loew; *Ceriana conopoides* (L.), at sap runs on beech trunks; *Criorhina asilica* (Fall.), common on leaves of trees at edges of woodland rides when it is raining; *Eupeodes* (subgenus *Lapposyrphus*) species A sensu Stubbs, female at edge of beech forest by a lake; *Helophilus trivittatus* (F.); *Lejops vittatus* (Meig.), very common about reeds in ditches with scrub down one side but not the other, the flies being found opposite gaps in the scrub, flying about six inches below the tops of last year's dead reed stems in a characteristic manner; *Merodon armipes* Rond., abundant on calcareous grassland; *Microdon analis* (Macq.), about cut stumps and associated ant nests on recently cleared woodland slope on calcareous soil; *M. mutabilis* (L.), very common in dry calcareous grassland, absent from wetter areas; *Neoscelia unifasciata* (Strobl); *N. annexa* (Müller); *Pipiza fasciata* Meig.; *P. festiva* Meig.; *Pipizella annulata* (Macq.); *Sphinxinorpha subsessilis* (Illiger), at sap runs on beech trunks; *Tropidia scita* (Harris); *Volucella inflata* (F.), in almost every oak (Quercus) woodland.

**SOFTLY, R. A.** — *Conops quadrifasciatus* De Geer (Conopidae), Hampstead Heath, Middx.

**WARING, P.** — *Ctenophora ornata* Meig. (Tipulidae), a female from Whitley Wood, near Brockenhurst, New Forest, Hants., on the BENHS Field Meeting on the afternoon of 22.viii.1998. Three males were captured in light traps soon after dusk the same day at Anses Wood in the north-west of the New Forest.

**COLEOPTERA**


**ALEXANDER, K. N. A., FOSTER, A. P. & GODDARD, D. G.** — A selection of the more interesting beetles found during the work of the National Trust's Biological


BOOTH, R. G.—(1) Three species of Coleoptera new to Britain. Placusa complanata Er. and Phloeopora nitidiventris Fauvel (Staphylinidae), Brentmoor Heath NR (a Surrey Wildlife Trust Reserve), Lightwater, SU9361, 30.xi.1997, several specimens from frass under bark of felled scots pine Pinus sylvestris trunk attacked by Ips sexdentatus (Boerner) (Scolytidae) (taken in company with Placusa depressa Mäkelin and Phloeopora testacea (Mann.) which were shown for comparison); Tychius brevicepsus Desb. (Curculionidae), Eype’s Mouth, Dorset, SY4491, 3.vi.1993, a single male swept.

(2) A selection of rare or notable Coleoptera, including new county or vice-county records. Agathidium confusum Bris. (Leiodidae), Burnham Beeches, Bucks, SU9584, 25.vi.1994, one male; Halacritus punctum (Aubé) (Histeridae), Crymlyn Burrows, Glamorgan, SS7192, 16.v.1998, four specimens under strandline debris; Pteniidiun brenskei Flach (Ptiniiidae), Bossington, S. Somerset, SS893484, 6.vii.1997, one in river shingle, new to Somerset and the most southerly British record; Pinella britannica Matt. (Ptiiidae), Thompson Common, W. Norfolk, TL9396, 8.iv.1998, sieving sedge litter; Acrotrichis lucidula Rossk. (Ptiiidae), Thompson Common, W. Norfolk, TL9396, 8.iv.1998, sieving sedge litter; Scopaeus laevigatus (Gyll.) (Staphylinidae), edge of Bayfield Pond, Bookham Common. Surrey, TQ1255, 28.vii.1996, one female; S. minutus Er. (Staphylinidae), Pignal, New Forest, SU313036, 10.iv.1997, one male landed on sieving sheet in late afternoon, new to Hampshire; Rugillus geniculatus (Er.) (Staphylinidae), Brentmoor Heath NR (a Surrey Wildlife Trust Reserve), Lightwater, SU9361, 30.xi.1997, one male sieved from Formica rufa L. (Hymenoptera: Formicidae) nest material; Ocyapus nero (Fald.) (Staphylinidae), Bradenham, Bucks, SU8297, 16.ii.1998, one female from pitfall trap on set-aside land at edge of cereal field, probably new to Bucks; Gymneta ripicola (Kies.) (Staphylinidae), Dinefwr Park, Carmarthen, SN6022, 16.v.1998, one female from soft wet mud, new to Wales; Atheta hybrida (Sharp) (Staphylinidae), Haddenham, Cambs, TL4676, 13.vii.1997, one female from fallen rotting elm trunk; Brachygluta pandellei (Saulcy) (Pselaphidae), Ardhu Onich, Westernness, NN0161, 16.viii.1995, one male by sieving old seaweed; Laricobius erichsoni Rosen. (Derodontidae), Loch an Eilein, Easternness, NH8808, 22.viii.1995; Abernethy Forest NR, Easternness, NH91 and NJ01, 24.viii.1995 and vi.1996; Loch Vaa, Moray, NH91, 19.vi.1996; abundant by beating pine Pinus, alder Alnus glutinosa and birch Betula; Dorcatoma dresdensis Herbst (Anobiidae), Ashstead Common, Surrey, TQ1659, 13.ii.1998, several larvae in old Gamadorna bracket on beech tree, adults emerged v-vi.1998; Atomaria lohsei Johnson & Strand (Cryptophaagiidae), Ashstead Common, Surrey, TQ1659, 18.vi.1995, one female; and Esher Common, Surrey, TQ1362, 17.i.1998, two females sieved from mouldy Formica rufa L. (Hymenoptera: Formicidae) nest material; Atomaria scutellaris Mots. (Cryptophagidae), Pegwell Bay, Ramsgate, E. Kent, TR372640, 29.ix.1996, two males by searching at base of cliff; Nephus quadrinaculatus (Herbst) (Coccinellidae), Hackbridge, Surrey, TQ2866, 24.ix.1977, several by beating ivy-covered garden fence; Anaspis septentrionalis Champ. (Scaptidae), Abernethy Forest NR, Easternness, NH998178, 16.vi.1996, one female beaten off pine Pinus, first Scottish record for over 100 years; Saperda carccharias (L.) (Cerambycidae), Grantown-on-Spey, Elgin, NJ0226, 23.vii.1995, one male beaten off aspen Populus tremula sapling at dusk; Oberea oculata (L.) (Cerambycidae), Cambs, vii.1998, recent larval borings in willow branch; Longitarsus nigerrimus (Gyll.) (Chrysomelidae), near Hurn, S. Hants, SZ19, 1996, a small colony, the first British record for over 60 years; Bagous puncticollis Boh. (Curculionidae), Thompson Common, W. Norfolk,


**BOWDREY, J. P.** — Nests of a solitary bee *Megachile* sp. (Hymenoptera: Apidae, Megachilinae), constructed from yellow hollyhock *Althea* petals and lined with sections of rose *Rosa* leaves, collected from behind an outdoor security light at Mill End, Bradwell-on-Sea, Essex, TL9905, by Mr & Mrs T. White and brought to Colchester Museum for identification. After overwintering in a cool room around 60 *Cryptophagus populi* Paykull emerged during May 1998.


EVERSHAM, B. C. & SHARPE, P. R.— Recent finds of scarce, rare or unusual ground beetles (Carabidae) at Pitsford Reservoir. Northants in 1998: *Blethisa multipunctata* (L.), *Bembidion quadripustulatum* Serv., *Pterostichus anthracinus* (Panz.), *P. gracilis* (Dej.), *Agonum piceum* (L.), *Badister unipustulatus* Bonelli, *Dromius angustus* Brulé.


(2) Progress of ‘The Great Stag Hunt’ organised by the Peoples Trust for Endangered Species. Display included a summary of the number of records received, draft maps, and a literature review by Andrew Tullet, University of East Anglia.

HALSTEAD, A. J.— (1) Some scarce or local Coleoptera taken in 1998. *Cicindela sylvatica* L. (Carabidae), Sopley Common, Hurn, Dorset, 2.vii.1998, on bare sandy soil; *Anomala dubia* (Scop.) (Scarabaeidae), Whitmoor Common, Surrey, 9.viii.1998, taken in flight; *Selatosomus bipustulatus* L. (Elateridae), Melcombe Park Wood, Melcombe Bingham, Dorset, 1.vii.1998; *Hylis olexai* Palm (Eucnemidae), Horsell Common, Surrey, 9.viii.1998, on dead standing pine; *Dermesthes murinus* L. (Dermentidae), RHS Garden, Wisley, Surrey, 13.v.1998, on honeybee combs containing dead bee larvae; *Cryptolaemus montrouzieri* Muls. (Coccinellidae), RHS

(2) A live specimen of the cellar beetle *Blaps mucronata* Latr. (Tenebrionidae), which had deformed elytra, found in a shed being used as an apple store at Ewness near Bridgnorth, Shropshire.


HARVEY, M. C. — A specimen of *Prionus coriarius* (Cerambycidae), found dead by Mrs Shirley Scrivener near her house in Beaconsfield, Bucks, SU929905, 14.viii.1997 and posted to the exhibitor. The associated parasite *Megaselia giraudii* (Egger) (Diptera: Phoridae) subsequently emerged, and from these, two species of Bradyconidae, *Dinotrema lineola* (Thoms.) and *Aphaereta minuta* (Nees) (Hymenoptera: Braconidae), were reared.


Levey, B. — 19 species of Buprestidae collected in the Algarve, Portugal between 3/9.v.1998. The following species were collected in open woodland of umbrella pine Pinus pinea, with both grass-rich and maquis-type vegetation, in the Parque Natural da Ria Formosa, Quinta de Marim, near Olhão. Julodis onopordi fidelissima Rosen., Acmaeodera nigellata Abeille. Acmaeoderella moroderi (Reitt.), A. adspersula (Ill.), A. coarctata (Lucas), Anthaxia parallela Castelnau & Gory, A. scutellaris Gene, A. funerula (Ill.), A. nigritula Ratz., A. marmottani hispanica Cobos, Agrilus elegans Muls. & Rey. Species collected at other localities were as follows; Acmaeodera rubromaculata Lucas, A, nigellata Abeille, Acmaeoderella adspersula (Ill.), Anthaxia funerula (Ill.), Praia Verde, W. of Villa Real, sand dunes with Pinus pinea woodland and understorey of Lygos monosperma (L.) (Papilionaceae). Acmaeodera cylindrica (F.), Anthaxia scutellaris Gene, 1km S. of Santa Catarina da Fonte de Bispo, flower-rich area at edge of orchard; Acmaeodera nigellata Abeille, Anthaxia millefolii polychloros Abeille, A. parallela Castelnau & Gory, A. scutellaris Gene, A. funerula (Ill.), A. marmottani hispanica Cobos, A. nigritula Ratz., 7 km E. of Monchique, flowery edge of pine wood; Acmaeodera degener quattuordecimpunctata (Villers), Anthaxia funerula (Ill.), A. nigritula Ratz., Agrilus angustulus (Ill.), Trachys coruscus Ponza, 10 km N. of Sao Bras de Alportel, in forest of cork oak Quercus suber; Sphenoptera rancu (F.), Trachys coruscus Ponza, Bensafrim, in flowery meadow; Aphanisticem emarginatus Ol., Trachys coruscus Ponza, Sierra de Monchique, Foia; Acmaeoderella adspersula (Ill.), Cape St Vincent, 5 km W. of Sagres, in heathland; Anthaxia millefolii polychloros Abeille, 3 km S. of Barranco Velho, in damp flowery meadow.

Levey, B. & Pavett, P. M. — Two species of Coleoptera new to Britain from Wales. They were collected while surveying two Welsh parklands on behalf of the Countryside Council for Wales. Bembidion (Pseudolimnaea) insatum Duval (Carabidae), Dinemwr Deer Park, Carmarthen, SN6122, and Llanover, Gwent, SO3108, vi.1996, single specimens collected in flight-interception traps; Atomaria turgida Er. (Cryptophagidae), Llanover, Gwent, SO3108, vi.1996, specimens collected in flight-interception trap at edge of Nothophagus and Larix plantation.
LEWIS, K. C.—Notable Coleoptera found in 1998 from the conservation area at the Royal Botanic Gardens, Kew, Surrey. Two aberrant specimens of Harpalus azureus (F.) (Carabidae), vi.1998, one in pitfall trap and one under bark; Scybalicus oblongiusculus (Dejean) (Carabidae), found outside conservation area, vi.1998, under beech bark; Rhytidotes plicatus (Gy.) (Curculionidae), vii.1998. beaten off black walnut Juglans nigra (L.); Otiorhynchus parvicollis (Ol.) (Curculionidae), vi.1998, swept from mixed grass and flora, the first British record.

LOTT, D. A.—(1) Beetles collected on 17.vi.1998 between 1400m and 1900m on Králova Hola in the Nizky Tatras in Slovakia. Carabidae: Trechus latus Putzeys, T. striatulus Putzeys, Pterostichus foveolatus (Duft.), P. morio carpathicus Kult, P. pilosus (Host), Calathus metallicus Dejean; Staphylinidae: Philonthus mareki Coiff., Quedius subunicolor Korge (= unicolor sensu Kr.), Q. alpestris (Heer), Q. cineticoilis Kr., Q. collaris Er., Aleochara verna Say.

(2) Beetles collected on 29.vii.1998 in Sphagnum pools in an old cut-over peat bog in the national nature reserve of Lac de Remoray, 850m, in the Jura (department: Doubs), France. Staphylinidae: Stenus excubitor Er., Aclyphorus wagenschieberi Kies. (new to France?); Scirtidae: Cyphon kongersbergenis Munster.


MENZIES, I. S.—Some scarce Coleoptera from Surrey. Agrilus simus (Ol.) (Buprestidae), Hogsmill Stream, Berrylands, Surbiton, TQ200678, 19.vii.1997, four beaten off old hawthorn Crataegus; and Nonsuch Park, Cheam, TQ235640, 12.viii.1998, one beaten off hawthorn; Uleiota planata (L.) (Cucujidae). Bookham Common, TQ125561, 30.v.1998, 1.vi.1998 and 31.vii.1998, single examples under bark of oak logs; Henosepilachna argus (Geoff.) (Coccinellidae) (Plate 1, Fig. 3), a species new to Britain: West Molesey. TQ133678, 14.v.1997 and 1.viii.1997, single examples discovered by Alysia Menzies (the exhibitor’s granddaughter) in her garden; and 1.xi.1997, nine beaten off ivy Hedera growing in the same garden (subsequently found in large numbers on ivy at Molesey Heath, TQ133673); Rhyzobius chrysomeloides (Herbst) (Coccinellidae), West Molesey, TQ133678, 6.xii.1997 and 12.x.1998, beaten off ivy Hedera and old hawthorn Crataegus in private garden; Rhyzobius litura (F.) (Coccinellidae), by River Mole, Molesey Heath, 8.xi.1998 [for comparison with R. chrysomeloides]; Stethorus punctillum (Weise), (Coccinellidae), West Molesey, TQ133678, 6.xii.1997 and 12.x.1998, beaten off ivy Hedera in private garden; Nephus quadrimaculatus (Herbst) (Coccinellidae), Bookham Common, TQ127560, 1.vi.1998, one beaten off ivy; Grammoptera variegata (Germar) (Cerambycidae), Bookham Common, TQ125564, 15.v.1998, one beaten
off hawthorn *Crataegus* blossom; Epsom Common, TQ183610, 25.v.1998, one beaten off oaks *Quercus*; and White Downs, TQ124495, 17.vi.1998, one beaten off hazel *Corylus: Pogonocherus fasciculatus* (Degeer) (Cerambycidae), Wisley Common, TQ067587, 26.iv.1998, two specimens beaten off recently fallen scots pine *Pinus sylvestris* branch by Maxwell Barclay; *Donacia obscura* Gyll (Chrysomelidae), Thundery Meadows, Elstead, 7.viii.1995, normal golden-green coloured specimens were exhibited next to greenish-blue and dark blue examples (the exhibitor states that the blue colour is due to prolonged exposure to sunlight); *Chrysolina americana* (L.) (Chrysomelidae), outside Shell Building, York Road, London SE1 (VC 17: Surrey) TQ308799, 15.viii.1997, crushed specimen found on pavement, and 3.vi.1998, many adults (some teneral) on flower heads of lavender plants in formal flower bed; *Cryptocephalus nitidulus* F. (Chrysomelidae), White Downs, between TQ105487 (east) and TQ130497 (west), 4.vi.1998 (a typical specimen) and 28.viii.1998 (a very dark specimen with purple reflection), by beating birch *Betula* and hazel *Corylus: C. parvulus* Müller, O. F. (Chrysomelidae), Ashstead Common, TQ167595, 23.v.1998, several beaten off birch *Betula*, single examples off hazel *Corylus* and hawthorn *Crataegus* blossom; *Pilemostoma fastuosa* (Schall) (Chrysomelidae), on the steep slope of Lamb’s Leys, White Downs, TQ124495, 17.vi.1998, in large numbers on young ploughman’s spikenard *Imula conyzoides* plants; *Bytistus betulae* (L.) (Attelabidae), Pigden, Ranmore Common, TQ124505, 20.ix.1992, one beaten off aspen *Populus tremula*; Bookham Common, TQ125564, 17.v.v.1998, one on aspen leaf; and Ashtead Common, TQ166593, 23.vi.1998, one adult and several characteristic ‘leaf-rolls’ seen on hazel *Corylus*.


Reach Copse, Sandhurst, Berks, 16.v.1998; *Platystomos albinus* (L.) (Anthribidae), Englemere Pond, Bracknell, Berks, 8.v.1998.

WHITTON, P.—(1) Carabidae taken in flood refuse from the River Cherwell, Sparsley Bridge, Oxford SP518119, in April 1998. *Trechus micros* (Herbst), *Tachys parvulus* (Dejean), *Pterostichus macer* (Marsh.), *Harpalus ardosiacus* (Lut.)*, *Anisodactylus binotatus* (F.) and *Acupalpus consputus* (Duf.).


Species marked with an asterisk (*) are possibly new vice-county records.

WRIGHT, S.—Some beetles found in imported timber products—from the collections at Nottingham Natural History Museum, Wollaton Hall.

(1) A specimen of *Anaplophora glabrripennis* Motsch., (Cerambycidae) taken to the RSPCA at Leicester in vii.1998 after being found at a local factory in a wooden packing case from China. It survived for about a week and featured on the ‘Pet Rescue’ programme (Channel 4 on 22.ix.1998) when the specimen was donated to Nottingham Natural History Museum.

(2) An unidentified longhorn beetle (Cerambycidae) and the leg of a piano stool from which it emerged. The leg was brought into the museum after the owner heard rasping sounds from within and noticed a small pile of sawdust accumulating on the living room carpet. The stool had been purchased in the UK 14 years previously but the origin of the wood used in its construction is unknown. A pupa was extracted from the leg and the beetle emerged a week later.

(3) An aboriginal carving of a snake, purchased at Ayer’s Rock, Australia on 22.viii.1983 together with a specimen of *Bostrychus jesuita* (Bostrichidae) which emerged from it in ix.1985, whilst sitting on its owner’s mantlepiece in Nottingham. The carving was donated to Nottingham Natural History Museum, where loud munching sounds could be heard emanating from within for about a year afterwards but no more beetles emerged and the noises eventually ceased.

**HEMIPTERA**

BADMIN, J. S.—Exhibit describing life cycle and behaviour of Issus coleoptratus (Fab.) (Issidae).


HODGE, P. J.—Two species of Hemiptera from Middlesex (both are new county records). Deraeocoris flavilinea (Costa) (Miridae), Forty Hall, Enfield, TQ3398, 19.vii.1998, beaten off aphid infested sycamore foliage; Fieberiella sp. (Cicadellidae), Park Royal, TQ1982, 16.ix.1998, beaten off cherry saplings. The first confirmed British record of the genus (Plate 2, Fig. 6).

KNILL-JONES, S. A.—Euplops scapha (Fab.) (Coreidae), Freshwater, Isle of Wight, 13.x.1998.


HYMENOPTERA


BOWDREY, J. P. — A female of the RDB1 sphexid wasp, Cercheris quadricincta (Panz.) taken 20.vii.96 on a sunny bank behind the Roman Wall in Castle Park, Colchester, Essex. It was found frequently in Colchester up to about 1920 when it was thought to have died out.

COLLINS, G. A. — Some RDB aculeate bees and wasps recorded in 1998, mostly in Surrey. Chrysididae: Hedychrum niemelai Linsenmaier, 20.vi.98, Horsell Common, Woking, Surrey; Chrysogona gracillima (Förster), 5.viii.98, on carrot flower, Spur Hill, Mytchett, Surrey. Pompilidae: Cryptocheilus notatus (Rossius) (Plate 2, Fig. 3), 19.viii.98, Bagmoor Common, Surrey. Apidae: Andrena ferox Smith, F. (Plate 2, Fig. 2), 7.v.98, Brockenhurst, S. Hants. (not recorded in the New Forest since 1966); Andrena hattorfiana (F.), 16.vii.98, Westcott Downs, Surrey; Sphecodes niger Siech, 23.ix.98, Box Hill, Surrey; Sphecodes spinulosus von Hagens, 29.v.98, Westcott Downs, Surrey (new to the county).


HAWKINS, R. D. — Some Hymenoptera, mostly aculeates, taken during 1998 at Bagmoor Common (SU9242), a reserve of the Surrey Wildlife Trust. Management to

HODGE, P. J.—Some aculeate Hymenoptera mostly taken in S.E. England in 1998. Chrysididae: Chrysis heleni Linsenmaier, 24.vi.98, swept from south-facing chalk grassland. Ranmore Common, Surrey; Chrysogona gracillima (Först.), on trunk of dead lime tree (Tilia) and Cleptes semiauratus (L.), beaten off oak, both 31.vii.98, by Turkey Brook, Forty Hall, Mickleham, Surrey; Chrysura radicans (Har.), 24.vi.98, on a log, White Hill, Mickleham, Surrey; Omalus aeneus (F.) and O. puncticollis (Mocsary), 28.vi.98, swept from willow (Salix), Wicken Fen, Cambs. Sphecidae: male Alysson uncinus (F.), 25.vii.98, swept from a steep south-facing clay bank, Claylands Nature Reserve, Bishop’s Walton, S. Hants., and a female of this species beaten from grey poplar Populus canescens near recently disturbed grassland, 16.ix.98, Park Royal, Middx.; female Stigmus pendulus (F.), 20.vii.98, one of many females nesting in a dead pine trunk. Forty Hall, Middx.

MARSHALL, T. & V.—Some Australian ants. An “empty” shell of the mollusc Thersites fraseri was collected August 1997 on the beach at Nelly Bay, Magnetic Island, off the coast of Queensland, Australia. Four months later back in Britain the shell was found to contain a colony of an unidentified ant with a queen and 12 workers. Also shown from the Queensland rain forest were specimens of the green tree ant (Oecophylla smaragdina), the golden or golden bum ant (Polyrachis sp.) and an unidentified species.


(b) A display of distribution maps of aculeate Hymenoptera for inclusion in Part 3 of the Provisional Atlas of British Aculeata due for publication in 2000.


UFFEN, R. W. J. — (a) Some Symphyta, bees and wasps new to the Hertfordshire list or of local interest. Xiphydriidae: female Xiphydria prolongata (Geoff. in Fourc.), 29.viii.98, on a fence post, Tyttenhanger sandpit, Colney Heath, Herts. Tenthredinidae: male Athalia rosae (L.), 31.viii.98, Therfield Heath, Royston, Herts.—this migrant species was of widespread occurrence in 1998 and was frequently seen near
the Dorset coast during the Dipterists/Hymenopterists’ week 28.vi-3.vii. Chrysididae: Chrysogona gracillima ( Först.). 15.viii.98, two females from a water trap on willow firewood, Smallford, St. Albans, Herts.; female Hedychrium coriacenum (Dahlbom), 10.viii.98, on a path with Lindenius panzeri (V. d. Lind.) nests, (L. albilabris (F.) may also be present), Aldenham golf course, Herts. Pompilidae: female Anoplius nigerrimus (Scop.), 13.viii.98, running among cut branches on the ground, Smallford, St. Albans, Herts. — previously erroneously recorded from Letchworth, Herts. by Ray Palmer before A. concinnus (Dahlbom) was recognised as British; Priocnemis agilis (Shuckard), female 12.viii.98 on carrot flower, male 15.viii.98 in a water trap, Smallford, St. Albans, Herts.; female Pompilus cinereus (F.), 29.viii.98, Tyttenhanger sandpit, Colney Heath, Herts. Sphecidae: male Astata boops (Schr.), 29.viii.98 (female also seen nesting in vertical soil face of oak stump), Tyttenhanger sandpit, Colney Heath, Herts; female Gorytes quadrasfasciatus (F.), 2.ix.98, Commons Fen, Welwyn Garden City. Herts.: Spilomena troglodytes (V. d. Lind.) running over leaves in the exhibitor’s garden, Welwyn. Herts.: missing from the exhibit but recorded at Smallford, Herts., 15.viii.98, on a carrot flower, a male of the nationally scarce Alysson lunicornis (F.). Vespidae: worker Dolichovespula saxonica (F.), 24.vii.98, from a nest in a felled tree, Hatfield Park, Herts. Apidae: male Hylaeus signatus (Panz.), 22.vii.98, on flowers of Matricaria inodora and Canpanula latifolia in a public garden, Welwyn Garden City. Herts. — no sight of females or their preferred pollen source, Reseda; female Hylaeus cornutus Curt., 12.viii.98, on a carrot flower, Smallford, St. Albans, Herts.; Melitta trinecta (Kirby), first record for mid-Herts. of this bee associated with Odontites, males 12.viii.98 and a single worn female on 24.viii.98, Smallford, St. Albans, Herts. (b) A scarce spider wasp from Bedfordshire. Pompilidae: male Priocnemis cordivalvata Haupt, 7.viii.98, from a sunny patch by a woodland path, Kings Wood, Heath and Reach, Beds.


ORTHOPTERA

HACKETT, D. — The stripe-winged grasshopper, Stenobothrus lineatus (Panz.) is a species widely regarded as occurring on heathland or chalk grassland in Britain but the exhibitor had found it in two London boroughs in recent years, with those in Middlesex appearing to be new for the county. These were at Camley Street Nature Park, 20.vii.96, and Adelaide Nature Reserve, Chalk Farm, 7.vii.98, both in Camden, Middx. The former is recently established grassland on clay in a former lorry park and the latter is a south-facing railway embankment, also on clay. It has also been found at Wimbledon Common, near the Windmill car park, 5.vii.95, in the borough of Wandsworth and Merton, Surrey. The habitat here is heathland/acid grassland. The exhibitor would welcome further records from the London area.

SMITH, I. F. — Photographs of the grey bush cricket, Platycleis albopunctata (Goeze) taken 4.viii.98 at Pared Mawr cliffs, Porth Ceiriad, Lleyn Peninsula, Caer, where a large colony was found.

DICTYOPTERA

MARSHALL, T. & V. — A mantid, Campion sp. from the rain forest on Lizard Island, off Queensland, Australia; also the world’s largest cockroach, Macro-
panesthia rhinoceros, which was abundant in the rain forest on Magnetic Island, off Queensland, Australia after storms in August 1997.


PLECOPTERA

MARSHALL, T. & V. — A stonefly, Dinotoperla sp. from the rain forest on Lizard Island, off Queensland, Australia, August 1997.

NEUROPTERA

BARNARD, P. — The BENHS logo and a display of Nemopterididae. There has been some recent discussion about the origin and identity of the BENHS logo. In 1996 Richard Jones published an article (Br. J. Ent. Nat. Hist. 9: 1–2) describing how the original drawing of the mystery insect was made by Arthur Smith in the early 1960s. Apart from its use on the Society’s ties, the logo was little used elsewhere, until it was recently redrawn by Rob Dyke and incorporated with the Society’s name in the form now used in all official publications. But what is the mysterious insect? In a later note (Br. J. Ent. Nat. Hist. 9: 128) Richard Jones showed that the original was certainly a member of the Neuropteran family, the Nemopteridae, none of which occurs in Britain, but also showed that it was not the well-known Iberian species Nemoptera bipennis Illiger. An example, shown in the exhibit, has been used in the logo of the Asociación Española de Entomología.

There are over 150 species of Nemopteridae world-wide, mostly in the tropics and warm temperate regions. The functions of the long narrow hind wings vary: sometimes they have an aerodynamic stabilising function, in some species they act as visual signals, and the swollen wing-tips of some species may divert the attention of predators. One subfamily, the Crocinae, have simple thread-like hind wings, and their cave-dwelling larvae have an enormously elongated “neck”. Examples of both were shown in the exhibit. These larvae were first found in ancient tombs in Egypt, and were therefore given the generic name Necrophilus! The striking appearance of the members of this family means that they have often been used as logos; in 1994 the International Association for Neuropterology adopted Palmipenna pilicornis Tjeder for this purpose. A related species was exhibited.

The specimen illustrated on the BENHS tie seems to have either a double swelling on each hind wing, or else the wing is twisted. Both conditions are found in this family, as shown in two of the specimens exhibited. On the new version of the logo the hind wings seem to have only a single apical swelling, and the hind wings are relatively shorter in comparison to the forewings than in the specimen on the tie. Any further attempts to track down the exact species of the logo will probably fail. Let us just accept that it is a nemopterid, and that it makes a very striking logo!

PLANT, C. — The ant lion Euroleon nostras (Geoff. in Fourc.) in East Sussex. An adult with teneral wing tips was found alive in a spider’s web on 6.ix.98 at St Leonards-on-Sea, E. Sx., by Colin Milkins and sent to the exhibitor for identification. A few days earlier another specimen had been taken in a light trap at Dungeness, Kent, and released. These are the only known British records away from the breeding population on the Sandlings around Minsmere Nature Reserve, E. Suff. A note has been published in The Entomologist’s Record, November 1998.
RAPHIDIOPTERA

SHARDLOW, M. E. A.—Two snake flies, *Phaeostigma notata* (Fab.) and *Xanthostigma xanthostigma* (Schummel), recorded from the RSPB reserve at Wolves Wood, Essex, in 1998.

ARACHNIDA


ISOPODA

SHARDLOW, M. E. A.—Two local woodlice recorded at Dungeness, Kent, during the 1998 BENHS field meeting. Oniscidae: *Clysticus convexus* (Deg.) and Armadillidiidae: *Armadillium nasatum* Budde-Lund.

ACTINARIA


ILLUSTRATIONS


REVELS, R.—A range of wildlife photographs from Richard Revels library. A photograph of *Epipagis cancellata* Zeller and *Marasmiopsis poeyalis* Boisduval, resting on a wall at Bo, Sierra Leone.

BOOK REVIEWS

The families of Diptera of the Malay Archipelago, by P. Oosterbroek. Fauna Malesiana Handbooks, Volume 1, xii + 227 pp. Brill, Leiden, £70.00, hardback—The volume considered here is the first in the Fauna Malesiana Handbook series, intended to ‘facilitate the identification, and thereby the management, of the vast zoological diversity of the region’. It covers the order Diptera, the two-winged flies. The book contains an introduction, sections on classification, life stages, adult morphology, keys to the families, family descriptions and illustrations. The region covered extends from Sumatra and Borneo eastwards to the tip of New Guinea, excluding the Bismarck Archipelago, the Solomon Islands and the Philippines. It thus lies within the Oriental Region and the Australasian/Oceanian Region including islands both sides of Weber’s line. Dipterists are fortunate that there are catalogues available for all Regions (only the Neotropical catalogue is incomplete) and the catalogues for the Oriental Region and the Australian/Oceanian Regions were published in 1973–7 and 1989 respectively. This gives workers a firm foundation for research, but the area covered here is huge and diverse and the present work wisely attempts only to give an overview of the state of knowledge to family level. It does not give details of the larval morphology of the families included, but most of the information available on Diptera larvae is from temperate species and is very incomplete. The Malay Archipelago has some of the richest centres of biodiversity in the world, with islands rich in endemic species and even single valleys in New Guinea with endemics. Although no single island approaches the Afrotropical or Neotropical Regions in number of species, the total diversity is nearly as important and the fauna is much more fragmented and therefore vulnerable. It is only through encouraging local workers that conservation can become effective. Besides the scientific interest of biodiversity, the Diptera of this region include very many species damaging to man, crops or domestic animals. Examples are mosquitoes as carriers of human disease and the screw-worm fly which causes myiasis in stock. There is a centre of diversity of dacine fruit-flies in the east of the region, including some of the most feared quarantine pests of fruit and vegetables in the tropics. Thus there is a clear need for an authoritative account of the Diptera of the region.

The book contains 109 families known to occur in the region and makes reference to six more that probably occur there. The key to families contains 150 couplets, too many for inexperienced students, but it is made workable by the excellent range of illustrations and the division of the key into seven major divisions. More experienced students can go straight to the division they require. This is an excellent key, overcoming many of the difficulties of identifying families from the region. There are undoubtedly some species that will not key out correctly, but they will be a tiny minority. The family accounts are a most useful feature, giving a short diagnosis to act as a check on determinations, a simple account of biology and classification and what references are available for the region. Many are written by or in collaboration with acknowledged experts in the field. It is clear from these accounts that much taxonomic and biological research needs to be undertaken in most families. In the chapter on classification there is a table of all families giving the number of documented genera and species and an estimate of the total number of species. Totals of 8811 documented species and 27694 estimated species are given. From the standpoint of a temperate dipterist the interesting families are those associated with rainforest—for example the estimated number of species of the following families: Stratiomyidae (600); Platystomatidae (600); Tephritidae (1400); Lauxaniidae (500); Chloropidae (600) and Drosophilidae (1000) indicate a much greater diversity than
would be found in temperate regions. The estimates are in fact rather conservative as they are mostly about double the number of described species. The Malay Archipelago has long been of great interest to naturalists since Alfred Russel Wallace collected there in the nineteenth century—incidentally collecting some of the early type specimens of Diptera. There is still great scope for biogeographical work in the region and this handbook should stimulate further work.

The 213 illustrations are largely taken from other works, with acknowledgements, and form an invaluable adjunct to the key. The references are extremely comprehensive for an introductory text and are commendably up to date.

This is a most useful work and will set a hard standard to follow for the remaining handbooks in the series. It is thoroughly recommended to workers on Diptera and other groups in the region and elsewhere, and as an introduction to one of the most diverse and interesting insect faunas in the world.

John W. Ismay

Expedition Field Techniques: Insects and other terrestrial arthropods. G. C. McGavin. Expedition Advisory Centre, Royal Geographical Society, 1 Kensington Gore, London SW7 2AR. Paperback, spiral bound, 94 pp, 1997, £10.00 (incl. p&p)—The Expedition Advisory Centre of the Royal Geographical Society provides training and advice to anyone planning an expedition overseas. Among its services it publishes a range of books on field research, including this slim but attractively produced spiral-bound volume on insects. George McGavin, the Assistant Curator of the Hope Entomological Collections at the Oxford University Museum of Natural History, has attempted to gather essential information on what he considers to be the most useful field techniques appropriate to expeditions. The result is an enjoyable and easily readable account with much sound advice. An exhaustive bibliography has deliberately been avoided, but key references are provided as an entry to the literature.

A short introduction to the diversity and importance of insects leads to Section 1, in which planning and preparation are discussed. It is stressed that expeditions which include an element of collecting have to have clear objectives or scientific justification. The chapter includes an interesting table of those expeditions with an entomological bias that have been supported by the RGS in recent years. Other topics touched upon include data handling, the importance of permits, the consideration of the long-term survival of the specimens, and whether the success of the expedition will depend on the availability of taxonomic help in the home country. Section 2 covers safety in the field, with advice on protecting oneself against insect attack, as well as the risks from road traffic accidents. This section is followed by a short section on insect conservation, and which provides more detail on the need for the correct permits for field research.

Section 4, the longest in the book at almost 50 pages, is about actually collecting insects. A wide range of techniques are covered (and well illustrated with black and white photographs), from the use of nets, trays and traps to suction samplers, extraction and sampling from live animals. Many of the entries are brief and lead to further references to provide more detail on the technique. It is obvious that many of the techniques could equally be used nearer to home. It seems that some of the mass-trapping or specialized techniques more often used in the tropics are now leading to the most striking contributions to field entomology in the UK. There may well be other ideas here that could be developed and tried. The chapter ends with a
discussion on data recording, which is also equally applicable to fieldwork at home. After collecting insects it is necessary to kill and preserve them and two short sections deal with these topics. I am a little surprised at the advice given on the preference in killing using a ‘traditional’ cyanide jar but ethyl acetate is given as the safest alternative and I would have thought that most would use ethyl acetate for this purpose.

Final sections provide information on equipment suppliers, sources of information, internet websites and references.

I can thoroughly recommend this book to all fieldworkers and not only those who are thinking of undertaking an expedition!

M. R. WILSON

The Collembola of Fennoscandia and Denmark: Part I. Poduromorpha by Arne Fjellberg. Fauna Entomologica Scandinavica, Volume 35. Brill, Leiden, 1998, 184 pages, 112 figures, Nl145/US$85, hardback—Collembola, or springtails as they are more colloquially known, are abundant in terrestrial ecosystems occurring at densities of more than 40,000 m$^{-2}$ in most soils. In the 1960s and 1970s, the standard work for identification was Hermann Gisin’s Collembolenfauna Europas (1960, Muséum d’Histoire Naturelle, Geneva). However, it is a tribute to Arne Fjellberg that when British entomologists need to identify Collembola, most now turn to his Identification Keys to Norwegian Collembola (1980, Norsk Entomologisk Forening) due to the clarity of the layout and the excellence of the diagrams. Fjellberg’s work, which includes most of the species also found in the UK, was prepared as camera-ready copy on a typewriter. How things have changed! Not only is this new volume produced to the very high standards we have come to expect from this series, but the number of species now known to occur in this part of Europe has increased substantially, several being described as new to science by Fjellberg himself.

In his 1980 key, Fjellberg included 105 species of Poduromorpha but this new volume contains descriptions of 161 species. The book is the first volume of a planned trilogy which will eventually cover all Collembola from Fennoscandia and Denmark. The Poduromorpha, comprising about a third of the species, are perhaps the most difficult to identify as many are small (less than 1 mm in length) poorly-pigmented species which spend most of their lives in the soil. Paradoxically, several species have lost their springing organ (furca) altogether. These ‘springless springtails’ no longer need this escape mechanism as they move in between soil particles.

After a concise introduction, in which the main characteristics of Collembola are described, there is a key to all families found in the region including those to be covered in the subsequent two volumes. There are comprehensive keys to genera and species within each family of Poduromorpha, and the text includes copious line drawings of the main diagnostic features, all of which are excellent (unfortunately due to an error by the printer, Fig. 101 of Metaphorura affinis is missing but this can be obtained from Dr Fjellberg on request from the address given on page 4). A comprehensive list of references is followed by several tables indicating presence or absence of all species from the provinces of Fennoscandia and Denmark. The localities are thoughtfully provided on a map on the inside front cover.

It has to be said that beginners will initially find this scholarly work difficult to use. However, it is hard to write an easy key to Collembola as they are such small animals, require clearing and examination on a microscope slide if one is to see all
the diagnostic features, and are difficult to observe alive. Nevertheless, if you feel like a challenge, why not study Collembola? They are ecologically important, especially as grazers of mycorrhizae and fungal diseases of plant roots, and have been implicated in assisting the movement of plasmids between bacteria in their guts, a possible link in gene transfer between genetically modified crops and native plants. Such work requires definitive identification of the species involved and Fjellberg’s book provides the information one needs to be able to do this accurately.

Steve Hopkin

Care and Conservation of Natural History Collections. David Carter and Annette Walker (Eds). Butterworth Heinemann, 1998. ISBN 0 7506 0961 3, £50—Hardback. This book is part of a series in Conservation and Museology and is aimed primarily at curators and collection managers of both large and small collections. However, there is much that should be read by amateurs. There are 9 contributed chapters, covering the physical care and conservation of groups such as vertebrates, insects and other invertebrates, vascular plants, and non-vascular plants. These are followed by chapters on fluid preservation, genetic material, pest management, prevention and control of insect pests, the collection environment, policies and procedures.

The chapter on “Insects and other invertebrates” (by A. Walker, M. G. Fitton, R. I. Vane-Wright and D. J. Carter) should be read by all entomologists who have collections or care for them. The emphasis is on good practice, long-term storage and accessibility to the information the specimen represents. It covers in detail topics ranging from preparation, handling and labelling of specimens, microscope slides, how to deal with plant material associated with insects (e.g. galls, leaf mines), specimen labels, to storage of specimens. Some of the points clearly need constant airing. There is no longer any excuse for specimens not being fully labelled for the future. Computer generation of labels is now routine (as long as they are on the right sort of thin card and use the right ink; another topic covered in an appendix). I believe that for British material the vice-county and a 6-figure grid reference should be routinely included. Short pins are the bane of older collections, and while I have some sympathy with those who use shallow cabinet drawers, which may not take the standard 38 mm pin, there is no excuse for using anything other than a stainless steel pin for modern material. Black pins just should not be used. I assume that many amateurs hope that their collections may one day be deposited in a public museum. It is very disappointing when otherwise superb collections arrive poorly labelled and on short black pins.

Perhaps other chapters of special interest to amateur entomologists will be those on the “Collections environment” (D. Carter & A. Walker) and on “Pest management, prevention and control” (D. Pinniger & J. Harmon). The emphasis here is very much on prevention of pest damage but is also on integrated pest management and the reduction of use of traditional pesticides. Amateurs are often rather cavalier in their use of chemical treatment, but reading this chapter should give rise to some revision in ideas. An example of this is naphthalene, no longer allowed in museums in the UK but still widely used by amateurs, even though it may be harmful to health and only a repellent to insect pests (and not an especially efficient one at that). I regret I can’t remember who told me that the best use of naphthalene at the (then) British Museum (National History) was for noticing one’s colleagues on the tube home in the evening! But how does one protect a collection from the ravages of insect pests without the use of chemicals? Prevention is better than cure and if Anthrems strikes one can resort to
freezing the drawers or boxes (which incidentally is what is usually done to incoming collections at many museums now).

Of the 4 appendices the one on papers, inks and label conservation is of particular relevance to amateurs, but others on disaster planning and a case history of a flood in a museum in Austria make salutary reading.

Although authoritative, all the contributions are very readable and well referenced. Perhaps it is not a book that will find a place in the library of amateur entomologists (although the price is reasonable for a reference work), but it should be a standard reference wherever natural history collections are housed.

M. R. WILSON


This is a most valuable contribution to the study of British Diptera, updating the Kloet & Hincks checklist of 1976, in which interval profound changes have taken place in accepted higher classification and the British Diptera fauna has increased considerably in the number of species represented. The unfortunate limitation of catalogues in general is that they require nomenclatorial changes to be made, but without affording the compiler the opportunity for stating the reason why. This catalogue is different, citing as it does every paper in which changes have been made, apart from adding a large number of additions, corrections, exclusions, explanations and useful notes. All papers in which nomenclatorial changes have been made are cited in full in the references following each family. Unlike many catalogues, synonyms are listed on a world basis. Each family has been checked by a person or persons having expert knowledge of it, and where differences of opinion exist these are mentioned. In the case of the Syrphidae views differ so greatly as to its phylogeny that there is no consensus of opinion. This has required genera to be listed alphabetically, rather than being placed in subfamilies and tribes as elsewhere in the catalogue. All in all it is a splendid piece of work and is an essential book for any dipterist, whether or not their interests are restricted to the British fauna.

J. C. DEEMING

Insect pests of food premises, by Peter Meaney. National Britannia Ltd., Caerphilly, 1998, 172 pages, including 125 colour plates, paperback, ISBN 1-902510-00-3. £35.00. Distributed by E. W. Classey, Oxford House, Marlborough St., Faringdon, Oxon SN7 7JP—This book is a lavishly illustrated guide to the recognition of the most common arthropod pests of food-handling premises in Britain. Most of the illustrations are in colour. Some have been published previously. They vary in quality; most are good or at least adequate, but a few (e.g. plate 70) are poor. Plate 108 appears a second time as plate 116. Over half of the book is concerned with illustrated descriptions of 64 individual pests or groups of related pests like mosquitoes, plaster beetles, or storage mites. With the descriptions there are brief notes on biology, preferred foods, habitat, and control.

There follows a series of tables, including a calender (sic) of insect activity in different months, and a list of food groups at risk from different pest types. Two
longer tables follow. The first of these (Table 5) lists the pests most likely to be found in 27 different types of flood-manufacturing premises. The common names together with the Latin names of all the pests are listed on page 120, but despite this both names are given throughout this 11-page table, which is thus twice as long as necessary. Table 6 lists the pests most likely to be found in over 170 different food-stuffs ranging from alfalfa seed through arcane foods like marchpane and dried rose petals to yoghurt powder. Again at every mention the common names of pests are invariably followed by the Latin names, resulting in an overlong table extending to 15 pages. It appears that these tables have been computer-generated without much thought about the data or their presentation. The name Fannia canicularis is consistently misspelt (9 times) in Table 5, and Oryzaephilus mercator misspelt (8 times) in Table 6. In this last table minor foods like dried loganberries are included, as well as major products like barley, wheat, and maize. These cereals are separately listed, and also covered by broader food categories like ‘Grain’ and ‘Corn, grains, flour etc’. No distinction is made between major and minor pests, and some omissions are unexpected. Necrobia rufipes appears twice in the list of maize pests, but no species of Sitophilus is included under this cereal. In the text (p.88) the preferred foods of Nemapogon granellae are stated to include dried meats, spices, and oilcake, but in Table 6 this species is not mentioned under any of these foods. Combining similar foods, e.g. bacon with ham, powdered goat’s milk with dried milk, cayenne pepper with ground chilli pepper, and macaroni with dried pasta, would further shorten this table without loss.

There are more errors than is desirable. The house cricket and cockroaches are wrongly numbered and the dried bean and coffee bean weevils are confused in Table 2. The genera Gnatocerus and Rhyzopertha are consistently misspelt. Several printer’s errors have not been picked up at the proof stage, including one in Table 4 which has generated a new pest ‘boiled egg flies’. The binding appears to be inadequate for the rather thick paper used, and already several pages in the review copy have become detached. This, and the profligate use of space are particularly undesirable in a softback book of 170 pages (omitting advertisements) expensively priced at £35.

C. E. Dyte

BOOK NOTICE


A comprehensive list of the species and subspecies of Butterflies and Moths known from Great Britain and Ireland, with Log Book numbers used in recording. Nomenclature revised, with current scientific and English names and important synonyms indexed. Annotated.
BRITISH ENTOMOLOGICAL AND NATURAL HISTORY SOCIETY

Officers and Council for 1999/2000

President S.R. Miles, F.R.E.S.
Vice-presidents B.C. Eversham, B.Sc., F.R.E.S., E.G. Philp, F.R.E.S.
Treasurer A.J. Pickles, F.C.A., F.R.E.S.
Editor M.R. Wilson, B.Sc., Ph.D., F.R.E.S.
Curator P.J. Chandler, B.Sc., F.R.E.S.
Librarian I.R. Sims.
Laternist I.F.G. McLean, B.Sc., Ph.D., F.R.E.S.
Building manager P.J. Baker, C.Eng., F.R.H.S.


The Society’s Public Liability Insurance

In 1997 the Society extended its third party liability insurance for cover in respect of official Society events to include field work carried out by members as part of their personal activities. It was expected that this would cover the insurance obligations, which accompany application for collecting and recording permits in many cases.

The Society has received a number of queries regarding the scope of the cover provided and this notice will hopefully clarify the position.

At events arranged by the Society and its sister organisations, Dipterists’ Forum and B.W.A.R.S., public liability insurance is in place which covers injury and damage to third parties arising from the activities of members and guests. Events include both field meetings and indoor events such as workshops and exhibitions. The cover provided is £2,000,000. It is important that permits for field meetings are issued in the name of the Society, or sister organisation, or to an individual on behalf of the Society, not in the name of the leader of the meeting.

The Society’s insurance policy also provides £2,000,000 of public liability insurance to individual members of the Society and sister organisations, in respect of their own field work and entomological research which is not part of a Society activity, providing this is undertaken in the United Kingdom and is not carried out with a view to financial reward.

Members who are contemplating carrying out field work on a paid basis are specifically excluded from this cover. We have now procured an arrangement by which such members can approach our brokers directly to obtain individual third party liability cover under our policy. This will incur the payment of an additional premium by the member concerned. We understand this will result in a very marked saving compared with obtaining this cover through a fresh policy.

We must emphasise that the cover referred to above is Public Liability Insurance and does not include Professional Indemnity, for which separate arrangements have been made.

Our brokers are John Ehrhardt
Lansdowne Insurance Brokers
Bracken House, 14–16 Christchurch Road
Bournemouth, BH1 3NJ. (Tel. 01202 291161)
ARTICLES
121 Creagdhuibhia mallochorum gen. and sp. n. (Diptera: Mycetophilidae), a remarkable new Scottish gnat with a discussion of its relationships. P. J. CHANDLER
138 Observations on the “guest ant” Formicoxenus nitidulus Nylander in nests of the wood ants Formica rufa L. and F. lugubris Zetterstedt in 1998. N. A. ROBINSON

SHORT COMMUNICATIONS
134 Cornish large blue butterfly records—appeal for information. M. LEE
137 A breeding record of Senometopia excisa (Fallén) (Diptera: Tachinidae). G. A. COLLINS
140 Recent British records of Gymnosoma nitens Meigen (Diptera: Tachinidae) and some comments on its status in Britain. R. A. JONES
141 Nysius senecionis (Schilling) (Hemiptera: Lygaeidae) in Norfolk. K. N. A. ALEXANDER

PROCEEDINGS AND TRANSACTIONS
Annual Exhibition, 31 October 1998
142 British butterflies 184 Dictyoptera
147 British Macrolepidoptera 185 Plecoptera
152 British Microlepidoptera 185 Neuroptera
158 Foreign Lepidoptera 186 Raphidioptera
165 Diptera 186 Arachnida
169 Coleoptera 186 Isopoda
179 Hemiptera 186 Actinaria
180 Hymenoptera 186 Illustrations
184 Orthoptera

BOOK REVIEWS
187 The families of Diptera of the Malay Archipelago by P. Oosterbroek. J. W. ISMAY
188 Expedition Field Techniques: Insects and other terrestrial arthropods by G. C. McGavin. M. R. WILSON
189 The Collembola of Fennoscandia and Denmark: Part 1 Poduromorpha by A. Fjellberg. S. HOPKIN
190 Care and Conservation of Natural History Collections, eds D. Carter & A. Walker. M. R. WILSON
191 Insect pests of food premises by P. Meaney. C. E. DYTE

BOOK NOTICE
192 Checklist of Lepidoptera recorded from the British Isles by J. D. Bradley

ibc BENHS Officers and Council 1999/2000
The Society’s Public Liability Insurance
BRITISH JOURNAL OF ENTOMOLOGY AND NATURAL HISTORY
BRITISH JOURNAL OF ENTOMOLOGY AND NATURAL HISTORY
Published by the British Entomological and Natural History Society
and incorporating its Proceedings and Transactions

Editor: M. Wilson, Ph.D., F.R.E.S., F.L.S. Department of Biodiversity & Systematic Biology, National Museums & Galleries of Wales, Cardiff CF10 3NP. (Tel: 02920 573263, Fax: 02920 239009) email: Mike.Wilson@nmgw.ac.uk
Associate Editor: Richard A. Jones, B.Sc., F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ.

Editorial Committee:

D. J. L. Agassiz, M.A., Ph.D., F.R.E.S. T. G. Howarth, B.E.M., F.R.E.S.
R. D. G. Barrington, B.Sc. I. F. G. McLean, Ph.D., F.R.E.S
P. J. Chandler, B.Sc., F.R.E.S. M. J. Simmons, M.Sc.
P. J. Hodge B. K. West, B.Ed.

British Journal of Entomology and Natural History is published by the British Entomological and Natural History Society, Dinton Pastures Country Park, Davis Street, Hurst, Reading, Berkshire RG10 0TH, UK. Tel: 01189-321402. The Journal is distributed free to BENHS members.
© 1999 British Entomological and Natural History Society.
Typeset by Dobbie Typesetting Limited, Tavistock, Devon.
Printed in England by Henry Ling Ltd, Dorchester, Dorset.

BRITISH ENTOMOLOGICAL AND NATURAL HISTORY SOCIETY
Registered charity number: 213149

Meetings of the Society are held regularly in London, at the rooms of the Royal Entomological Society, 41 Queen’s Gate, London SW7 and the well-known ANNUAL EXHIBITION is planned for Saturday 27 November 1999 at Imperial College, London SW7. Frequent Field Meetings are held at weekends in the summer. Visitors are welcome at all meetings. The current Programme Card can be had on application to the Secretary, J. Muggleton, at the address given below.

The Society maintains a library, and collections at its headquarters in Dinton Pastures, which are open to members on various advertised days each month, telephone 01189-321402 for the latest meeting news. The Society’s web site is: http://www.BENHS.org.uk
Applications for membership to the Membership Secretary: A. Godfrey, 90 Bence Lane, Darton, Barnsley, South Yorkshire S75 5DA.
Subscriptions and changes of address to the Membership Secretary: R. D. Hawkins, 30d Meadowcroft Close, Horley, Surrey RH6 9EL.

Non-arrival of the Journal, faulty copies or other problems arising from distribution of the Journal or notices to the Distribution Secretary: D. Young, 9 Marten Place, Tilehurst, Reading, Berkshire RG31 6FB.
Orders for books and back numbers of the Journal and Proceedings to the Sales Secretary: G. Boyd, 91 Fullingdale Road, Northampton NN3 2PZ. Tel: 01604 410056.
General Enquiries to the Secretary: J. Muggleton, 30 Penton Road, Staines, Middlesex TW18 2LD. Tel: 01784-464537. email: jmuggleton@compuserve.com

Cover illustration: *Torymus nitens* ♀ (Hymenoptera: Torymidae) on oak marble gall
photo: Robin Williams

NOTE: The Editor invites submission of photographs for black and white reproduction on the front covers of the journal. The subject matter is open, with an emphasis on aesthetic value rather than scientific novelty. Submissions can be in the form of colour or black and white prints or colour transparencies.
ENTOMOLOGICAL SURVEYS OF VERTICAL RIVER FLOOD DEFENCE WALLS IN URBAN LONDON—BROWNFIELD CORRIDORS: PROBLEMS, PRACTICALITIES AND SOME PROMISING RESULTS

RICHARD A. JONES
135 Friern Road, East Dulwich, London SE22 0AZ.

Abstract. Entomological studies of Deptford Creek and River Wandle, two tributaries of the River Thames in urban London, have highlighted some of the logistical difficulties faced by entomologists undertaking survey work, especially on derelict sites in built-up localities. The two sites are essentially vertical river flood defence walls, crumbling industrial wharfs and decaying timber frontages. The available habitat was limited to small pockets of crumbling wood, some nooks and crannies in old concrete, sprouting vegetation and a few small pockets of derelict land immediately behind the tops of the walls. Access was difficult and dangerous, invertebrates few and far between and normal collecting methods were inadequate. This paper reflects on some of the problems encountered, solutions devised and creatures discovered. A selective systematic list of uncommon, unusual and interesting species illustrates the power of colonization of insects in these ruderal sites and includes a nationally rare (red data book) species and 11 nationally scarce (notable) species.

INTRODUCTION

There are many practical books on field entomology, handbooks dealing with the basic skills of just how and where to find insects. In many of them great store is placed on seeking out the right habitat for the right quarry. It is a common feature of many of these handbooks to suggest that by exploring prime natural habitats for the more unusual or specialist species, the commonplace ones will also be found along the way. And so it is that much valuable research is done on the distribution, ecology and biology of insects.

But entomologists who carry out survey work on behalf of some organization, be it local authority, national organization or wildlife group, have the hunting equation reversed. Rather than seeking out suitable specific habitats for certain particular insect species, the habitats are already chosen and the task is to find out what occurs in them.

For many such surveys, however, this is not a problem and the standard techniques of sweeping, chasing, visual searching, grubbing, digging, trapping and all those other methods second nature to the naturalist, are perfectly adequate. For example, faced with any natural or semi-natural habitat like woodland, grassland, heathland, pond or marsh, the location of at least some insects is relatively easy. Even more extreme biotopes such as saltmarsh, moor or quarry are more or less accessible to these normal entomological techniques.

However, urban sites, derelict, ruderal, waste or however one might choose to describe them, are distinctly less easy to study: vegetation is sparse; soil is often littered with rubble, tangled steel and rubbish; the ground is uneven and treacherous underfoot; access is often difficult, either because of dangerous physical obstruction or the sensitivities of owners and developers.

Studying insects on derelict industrial sites is fraught with enough difficulties, but even several years of "brownfield" entomological work had not prepared me for...
Deptford Creek and the River Wandle, two tributaries of the River Thames. The previous unusual and problematic demands of working on desolate habitats paled into insignificance beside the peculiar problems of surveying these decaying wharfs.

**THE PROBLEMS OF VERTICAL RIVER WALLS**

When I was first asked, by the south-east London Boroughs of Lewisham and Greenwich, to survey the invertebrates of Deptford Creek, my heart sank. What was there to survey? When I crossed over the Creek Road lifting bridge in September 1997, all I could see were a few straggling bits of buddleia hanging down into the gloomy grey water, and a few tufts of stinging nettle sprouting from the tops of half-decayed timber piles. What sort of habitat was that?

For one thing, there was hardly any habitat anyway. The vegetation sprouting from rotten piles was Spartan in the extreme—a small clump of greenery every few yards and some stunted overhanging bushes. A few tiny ledges had accumulated a thin layer of wind-blown soil with moss and lichen. Some nooks and crannies in the broken brickwork and concrete appeared to be curtained with cobwebs. Near the high water mark some of the wharf timbers were decayed and crumbling.

The habitat was also inaccessible. Vegetation was growing out at about the mean high water mark, 3 to 7 metres above the thick silt mud at low tide and well out of reach from the tops of the wharfs. Likewise the crumbling timber and brickwork was at the point of greatest weathering from wind and water, at the high tide mark. Many of the wharf tops were crumbling and unsafe, ancient access ladders were rusted through or now barely attached to the walls by tenuous strands of precarious looking metal. The mud below was littered with jagged bits of metal rubbish. It presented, to say the least, a thoroughly unsavoury appearance.

After discussion with members of the Creekside Renewal Project, who were commissioning the survey, it became clear that, apart from brief forays across the thick silt mud at low tide, the only really sensible way to approach the task was to visit the walls by boat at high tide. This raised another sheaf of difficulties over the safety of the exercise and the logistical nightmare of co-ordinating weather, tide, boat hire and on-board help. Luckily a local boatman was found who was enthusiastic about the project and knowledgeable about the local boating conditions in the creek.

Just after this I was asked to do a similar survey of the lower reaches of the River Wandle where it enters the Thames at Wandsworth. The tidal stretch of the river was similar to Deptford Creek, but shorter and narrower and with more vegetation and above two weirs was a narrow canalized non-tidal section with slow-flowing freshwater. But it was equally inaccessible and only marginally less dreary looking. Similar boating tactics were proposed for the Wandle survey. Figure 1 shows a sketch map of London’s Thames with the River Wandle and Deptford Creek.

In the course of a year’s work on Deptford Creek and River Wandle, I spent very many hours bobbing about in a boat, and became quite adept at not falling in whilst leaning out precariously to tube a small fly or poot up a spider. During that time I had to adapt my equipment and methods to the odd situation I found myself in. At the end of it all I was unprepared for the unusual and exciting results.

**Equipment**

In addition to the usual array of entomological and photographic paraphernalia ordinarily carried by naturalists, the following items were found useful or necessary for the survey.
Fig. 1. Sketch map of the River Thames showing its tributaries the River Wandle (TQ 2575, VC 17) and Deptford Creek (TQ 3777, VC 16). Not to scale.

- Boat. My transport in Deptford Creek and tidal section of the River Wandle was an especially buoyant one, a small (4 metres) steel jolly boat with outboard motor, from a small commercial ship; it had sealed enclosed voids to ensure flotation even if deluged or upturned. This was particularly important when reaching up to vegetation on the walls, standing on the edge of the boat and making it list perilously. Had we turned over, I was assured that there were handrails on its underside to cling to and to assist in righting the vessel. We always carried oars, and if intending to go out into the Thames also carried a spare outboard motor and extra fuel. For the canal section of the Wandle, we used a sturdy inflatable craft with wooden floor and reinforcing. We had to manhandle it over an 8-foot gate, but luckily it could be deflated and dismantled into manageable pieces. This boat had the advantage of being remarkably stable on the slow-flowing water and had a very small draught (the part of the boat beneath the water) so managing to avoid catching on the upturned supermarket trolleys and other rubbish dumped into the shallow water.

- Lifejacket. I was not sitting carefully in the boat like any sensible passenger should; I was standing up, moving about, leaning out over the edge, grabbing onto overhanging vegetation and wharf timbers and generally acting in what would ordinarily be a thoroughly irresponsible manner. Even on the stillest day in the calmest stretch of Deptford Creek I would have been foolhardy not to wear some sort of flotation jacket. A true lifejacket was rather bulky and cumbersome, so I opted for a buoyancy jacket, a safety garment designed to counter my weight in the water rather than support me completely. I could wear it under my normal coat or jacket and so still make full use of my pockets for lens, tubes etc. It also kept me warm, something I had not appreciated I would be thankful for; on even warm days, the wind and spray were exceptionally cooling in our exposed situation.
Equipment box. In the confines of the boat, I was forever standing on my rucksack. It was constantly shifting as the boat rocked about and it frequently got wet with spray, splashes from the oars and mud from the river walls. I preferred to use a tough plastic flip-top tool box. It was more or less waterproof, it resisted being kicked and trodden on, and I could also use it as a seat when most of the rest of the boat was wet and muddy. It had small compartments in the lid for tubes and pooter. As a precaution against accidental opening when getting in and out of the boat, it was secured with a small padlock. After a particular muddy outing it could be emptied and hosed down with water to clean it.

Extra-long pooter. The usual technique of popping a plastic tube over a fly or other insect sitting on a tree trunk could not work while the person doing the tubing was bobbing up and down in a boat. An extra-long rubber tube on a pooter at least allowed a flying suck to be made as an insect sitting on wall, timber or vegetation came in and out of reach.

Washing-up bowl. Sieving onto a plastic sheet was impossible in the boat. There was no flat surface except the floor, often muddy, slopping with water or cluttered with ropes. Standing precariously on the edge of the boat I could grab handfuls of litter, vegetation or rotten wood and pass it down to someone else offering up the bowl and sieve to meet me. Even so, no small amount of “habitat” ended up in the boat.

Torch. Holes and crevices in the walls were often occupied by spider webs. A small torch was useful when examining these nooks.

Boat hook. To keep the boat steady against swell and tide, a long-pole boat hook jammed into a hole in the wall or hooked over an old wharf fixing was the most effective stabilizing device. It could also be used to pull down high branches for beating or holding a long stalk steady for a photograph.

Rope. Apart from its obvious use in mooring the boat while the occupants had a cup of tea and a sandwich, rope tied to a fastening up-water could be gently let out allowing the boat to drift down slowly on the flow or tide as the passing walls were scanned for invertebrate life. It was much easier to control the movement of the boat in this way rather than to keep stopping and starting the engine or fiddling with oars against the slow but remorseless flow of the water.

Broom handle. For low-tide visits to Deptford Creek, a long wooden pole was very important for testing our footing. At low tide, the centre of the creek had a trickle of running water and the ground was more or less firm and pebbly underfoot because the silt was washed away. In most places it was a few inches deep but there were deep pockets many feet deep. The pole was used to test the river bed as we waded through the water. Stretching out on either side of the central channel were mud banks of deep silt. In some places the mud was many feet thick, but submerged stones and other rubbish under the surface allowed approach to the river walls in places. The pole was very important for testing depth and stickiness of the silt banks.

Ladder. For the low-tide visits, a light two-stage aluminium ladder was used to climb up the walls to the line of vegetation sprouting around the mean high water mark several metres above.

Mobile phone. Not just a luxury for idle chat, it was felt very important to have at least one telephone on board should any accident occur or the boat get into difficulties. Wrapped and waterproofed in a sealed plastic bag, it could be used even after complete submersion. Such communication was also important for low-tide visits should anyone become trapped in the thick silt or get caught short by the incoming tide. Luckily I was never called upon to make emergency use of this item.
Because of the highly unusual nature of the terrain, standard collecting techniques had to be modified.

- Sieving soil and rotten wood. During the autumn and winter, Deptford Creek was especially bleak. Vegetation had died back and the only available habitat was leaf litter, soil and decaying vegetable material on the crumbling timbers and ledges. Handfuls of this were quite literally snatched from the walls as the bobbing movements of the boat allowed and sieved over the plastic bowl. With care, a foothold could be found on the wall to reach up higher to grab a handful from further up the wall. This was nevertheless rather disconcerting if there was much swell, and at any moment I half expected to be either stranded dangling precariously from a stunted buddleia bush or tipped into the river. Thankfully the latter outcome never occurred.

- Sweeping. Sweeping is a very awkward procedure when standing up in a boat. A swift thrash of the net tended to push the boat in the opposite direction. Too much sweeping backwards and forwards made the boat bob unnervingly. A technique of gentle sweeping was employed resembling a rather balletic parody of the normal aggressive technique. Since vegetation was scarce, thin and straggling, gentle sweeping was usually sufficient to dislodge insects.

- Beating. Larger overhanging bushes and small trees were beaten, either over a sweep net or a plastic bowl. A pale umbrella, upturned to make a large but collapsible beating tray was found to be too unwieldy, particularly on blustery days when the boat was very exposed. Unfortunately this meant that when working under a large bush, the boat tended to accumulate falling leaves, twigs and debris and not a few invertebrates. On more than one occasion an insect was found scuttling round the gunwales as we puttered back to base. It was sometimes impossible to be certain from which particular site it had come.

- Dissecting rotten timber. Unlike a terrestrial habitat where a log might be casually turned over for easy inspection, any examination of rotten wharf timber had to be made while leaning out of the boat, or sections had to be examined in the boat. This was all very well for small flakes of friable wood crumbling from a rotten wooden plank which could be sieved over the plastic bowl. However, the decayed nature of the Deptford Wharf's meant that in many places whole timber piles were in danger of collapse. On several occasions very large pieces of wood suddenly broke loose and a lightning decision had to be made whether to try and manhandle them onto the boat for examination or push them away to fall harmlessly into the water.

- Visual searching. On sunny days in spring and summer, the vertical river walls of the creek acted as sun traps, and basking insects were visible on the timber, walls and herbage. Large umbels of garden angelica were a prominent feature of the creek and attracted many insects including bees and hoverflies. It was often necessary to stand up in the boat to examine these flowers closely, or they had to be gently pulled down by hand or boat hook.

- Direct pooting. Leaning out from the boat as we manoeuvred at high tide, it was possible to suck up insects directly from the herbage using a pooter. Lying down on the bow of the boat as we slowly drifted on the flow and tide, no tall human silhouette was visible and close approach to dipterons and hymenopterons was possible where under other circumstances it would have been very difficult. This was a most useful technique for capturing the small flies which seemed to spend all their time on the algal coating to the vertical walls, just above the lapping waves of
the incoming or outgoing tide, and the spiders which rested inside their funnel and sheet webs in the crumbling walls.

- Close-up photography. My usual technique for close-up photography requires that my hand rests on the plant, log, ground or trunk on which the insect was resting. The lens of the camera resting on top of my hand is thus steadied and I could image the insect more or less easily in a very shallow field of focus. But with my hand resting on the river wall or timber pile to steady the lens, the remainder of my body was being forced to bob up and down on the swell of the water. I had to move my body up and down with equal and opposite motion to the swell to counter the movement of the boat. This was very tiring to the neck and back muscles, but it could be done for a few moments. In fact, doing anything in a boat, other than sitting calmly, meant a constant working of the head, arms and legs to counteract the vessel’s bobbing movement. This was surprisingly tiring, even on a still day.

**Safety**

It is hard to imagine that “safety” might be considered an important issue when pursuing the gentle art of collecting insects. But the dangerous nature of the crumbling wharfs, the hazardous metal rubbish dumped in the water, the treacherous nature of the thick and sticky silt and the difficulties of manoeuvring a small boat in a tidal waterway all compounded to lift these surveys out of the ordinary.

It was a prerequisite of the commissioning bodies for both surveys that no activity should be construed as dangerous or unsafe. As stated above we always carried life jackets, mobile phone and spare motor. I always made sure I had a small first aid kit. When in the boat, I was always accompanied by a knowledgeable boatman, and often by another person who could hold the boat steady whilst I leant perilously out. We always consulted tide tables and kept a wary eye on the movement of the water. If the tide left quicker than we anticipated and we suddenly found that we could not get back up river to our base, we had already planned to tie up the boat against an alternative wharf and return for it at next high water.

Because of the derelict nature of parts of the Creek, there was always a danger from hidden obstructions under the water—mainly dumped supermarket trolleys and car bodywork parts, spilled building materials from a neighbouring merchant warehouse and dropped steelwork from the Docklands Light Railway bridges being constructed over the Creek whilst the survey was progressing. Reconnaissance at low water revealed where particular hazards were, so that we could avoid them when they were covered by the tide.

Low-tide visits were also only made when I could be accompanied, and working in pairs we constantly tested the water through which we were wading and the mud over which we ventured, with a long wooden pole. We had to be particularly careful when walking under the newly built railway bridges because of the danger of snagging our waders on the pieces of sharp metalwork which fell from the scaffold, gantries and welding work all too frequently. We also had to be careful of sudden deep water where vortices had created hidden and treacherous pools.

**Results**

Having established an approach to surveying the unusual terrain of these decaying wharfs, the learning process of finding invertebrates took several visits. The Deptford Creek survey began in September 1997. The start was very slow. On some visits, during the first few months, I was lucky to finish a day with more than 10
invertebrate finds, most of which would be immature spiders and virtually impossible for me to name anyway. By the end of the preliminary survey, in December 1997, after 3 months of very poor insect-hunting weather, the 92 species recorded seemed a not unsatisfactory list (Jones, 1997). Given the incredibly small areas of habitat, the lateness of the season and the severe harshness of the environment, this was about 90 species more than I had expected.

At the end of a full year's worth of fairly intensive recording, with about 30 site visits, the list increased to 287 species (Jones, 1998a), and included one nationally rare (red data book) species and nine nationally scarce (notable) species. I was suitably impressed. At the finish, I was at least able to answer my own rhetorical question. What sort of habitat was it? It was an astounding habitat. Its capacity to astound was based on two conflicting powers: the power of the human mind to dismiss it as ugly and unproductive, and the power of nature to carve a foothold on even the bleakest strand of earth. As can be seen from Figs 2 and 3, some areas of the creek had plants growing out of every available cranny, notably buddleia overhanging from above and garden angelica sprouting up from the mean high water mark.

The Wandsworth River Wandle survey was less intensive, but at the end of one season, 5 day visits had produced 153 species (Jones, 1998b); they included the same nationally rare (red data book) species as found at Deptford, one of the same and two further nationally scarce (notable) species. There was generally a great deal of

Fig. 2. General view of the central reach of Deptford Creek, looking north. The tide is about half out, and the silt mudbanks are beginning to be exposed. At low tide, the water is confined to a small flowing channel in the centre of the creek, about 3 metres wide and 30 cm deep. Buddleia grows out from the tops of the wharfs, there is some sprouting vegetation from the old timber frontages (left and far distance), but virtually none from the sterile sheet metal piling (centre). Photo N. Bertrand.
Fig. 3. Herbage growing out of a ledge just below one of the Deptford wharf tops, and sprouting out from decayed timber piles. The tide is virtually at the mean high water mark. The most prominent plants are cascading hops (right), garden angelica umbels half submerged and ivy (far end of ledge). Photo N. Bertrand.

Table of species. The Deptford survey shows two columns, one for the total species at the end of 1998 and one for the species recorded by the end of the preliminary survey to December 1997.

<table>
<thead>
<tr>
<th>Invertebrate order</th>
<th>Deptford Creek Total</th>
<th>River Wandle</th>
<th>Species in common</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collembola (springtails)</td>
<td>2</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Coleoptera (beetles)</td>
<td>63</td>
<td>53</td>
<td>23</td>
</tr>
<tr>
<td>Dermaptera (earwigs)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diptera (flies)</td>
<td>78</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>Hemiptera (bugs, hoppers, aphids etc)</td>
<td>39 (17)</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>Hymenoptera (bees, wasps, ants etc)</td>
<td>44 (6)</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Lepidoptera (butterflies and moths)</td>
<td>19 (5)</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Neuroptera (lacewings)</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Odonata (dragonflies)</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Orthoptera (grasshoppers)</td>
<td>1</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Thysanura (bristletails)</td>
<td>2</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Aranaea (spiders)</td>
<td>15</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Opiliones (harvestmen)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acari (mites)</td>
<td>1</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Isopoda (woodlice)</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Chilopoda (centipedes)</td>
<td>1</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Myriapoda (millipedes)</td>
<td>2</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Amphipoda (sandhoppers)</td>
<td>2</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Mollusca (slugs, snails and shells)</td>
<td>3 (2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>287</strong></td>
<td><strong>153</strong></td>
<td><strong>70</strong></td>
</tr>
</tbody>
</table>
overlap (70 species in common) between the two surveys reflecting the similar nature of the habitats, but because of the greater flow of freshwater down the Wandle, and its less tidal estuarine character, a greater proportion of what might be termed more characteristically “riverine” species occurred. But in both cases, a remarkable diversity of species demonstrated the powerful colonization abilities of invertebrates to discover available niches and to eke out a living in the relatively harsh and exposed conditions of the decaying man-made habitats.

Many of the species from both tributaries were very common and widespread and were what might be termed ubiquitous garden species, occurring throughout the area of urban and suburban London on almost any patch of disused, ruderal or disturbed ground. There were some straightforward characteristic species of estuaries, rivers and exposed marine habitats, but there were also unusual finds which came as a real surprise. Rather than repeat the complete systematic lists which contained all these commonplace creatures, a table of species and a selective systematic list is included here with comments on a few noteworthy and interesting species.

**Selective systematic list**

**Collembola**

At least two unidentified springtail species were found in leaf litter on ledges or beaten from overhanging vegetation in Deptford Creek.

**Coleoptera**

Anobiidae. *Anobium punctatum* (Deg.) and *Ptilinus pectinicornis* (L.) were both found in decaying timber piles on the Wandle. Burrows and larvae of an *Anobium* species were also found in a driftwood log which had become caught up in a large fig tree growing out from one of the crumbling Deptford wharfs. *Stegobium paniceum* (L.) was beaten from overhanging vegetation at Deptford; it is unusual to find it in the open. On the River Wandle, this species was common in pigeon nests on deep ledges underneath a broad road bridge over the river and was presumably feeding on grass seeds from nesting material and other spilled food brought back by the birds to their young.

Apionidae. *Kalcapion semivittatum* (Gyll.), by sweeping annual mercury sprouting above one of the Deptford wharfs, 6.ix.1997; notable A (Hyman & Parsons, 1992), but fairly frequent in the London area. *Taenapion urticarium* (Herbst), by sweeping and beating overhanging nettles and other vegetation at Deptford, 1 & 8.vi.1998; generally a very local species despite its common foodplant, although provisionally listed as notable B by Hyman (1986), this was not confirmed by Hyman & Parsons (1992).

Biphyllidae. *Biphyllus lunatus* (Fab.), several were found in crampball fungus, *Daldinia concentrica*, 1.iv.1998, on a small log apparently dumped on a site on the Thames just near the mouth of Deptford Creek. An ancient woodland “indicator” species, this beetle is highly unlikely to have got to the site naturally, and on the same day, a few feet away I found the wood-boring sawfly *Xiphydria camelus* an equally odd find.

Carabidae. Various common species were found under planks, stones and rubble above the wharfs. The most frequent carabid in both surveys was *Bembidion harpaloides* Servilie which occurred in the rotten timber piles, in the splash zone near the mean high water mark upwards. According to Luff (1998) this is mainly a species of woodland, but it is obviously very tolerant of the saline conditions.
Chrysomelidae. Chrysomelids were very few and far between. On the Wandle a medium-sized willow growing from one of the banks was covered with many hundreds of *Plagiodyra versicolora* (Laicharting); although provisionally given notable B status by Hyman (1985), this was not confirmed by Hyman & Parsons (1992), and it is fairly frequent on willows even in suburban London.

Coccinellidae. *Adonia variegata* (Goeze) occurred at both Deptford (two specimens, 20.v and 23.vi.1998) and Wandsworth (many seen on 15.vi. 24.vi. 5.viii. & 22.ix.1998); notable B (Hyman & Parsons, 1992). According to Majerus *et al.* (1997) this ladybird has numbers and populations which fluctuate, boosted by regular migrations from the Continent, and is fairly widely distributed in the Thames Estuary. *Halyzia sedecimguttata* (L.) was beaten from overhanging vegetation at Deptford, possibly associated with the several small stunted sycamores growing out from the wharf tops. Although provisionally given notable A status by Hyman (1986), this species has been found to be quite widespread and this status was not confirmed by Hyman & Parsons (1992). *Stethorus punctilium* Weise, several by beating overhanging vegetation, on both sides of Deptford Creek. Provisionally given notable B status by Hyman (1985), this was not confirmed by Hyman & Parsons (1992). *Coccinella septempunctata* L. was astonishingly common at both Deptford and Wandsworth, with hundreds of larvae, pupae and adults often crowded together on the stunted buddleia bushes which carried a very heavy aphid load.

Curculionidae. *Euophryum confine* (Broun) was dug out of rotten timber piles on some of the Deptford Wharfs, but I was slightly surprised not to find *Pselactus spadix* (Herbst). *Notaris scripi* (Fab.), one beaten from small garden angelica plant growing out from brick wall on Deptford Creek. 23.vi.1998; notable B (Hyman & Parsons, 1992), and associated with lesser pond sedge *Carex acutiformis* and reedmace *Typha latifolia*. Neither plant occurs in the Deptford area, however, reedmace does occur further up the Ravensbourne River system in Lewisham (Burton, 1983) and it therefore seems likely that the weevil may have been washed down the river from above.

Halipidae. *Haliphus confinis* Stephens occurred in small numbers in the non-tidal part of the River Wandle above the weirs. This was the only true water beetle found in the surveys.

Lucanidae. *Lucanus cervus* (L.), the stag beetle, a large male found crawling up the brick wall of Mumford’s Mill, Deptford, 23.vi.1998, inches above the incoming tide; notable B (Hyman & Parsons, 1992), but fairly common in south-east London. There is no suitable habitat anywhere in Deptford Creek for this beetle which is essentially a garden species in the London area. The tall warehouse buildings of the mill produce strong down-draughts when the wind is from the south-west and it is likely that the flying beetle was caught in the draughts and blown into the water from where it crawled up to safety.

Nitidulidae. *Meligethes rotundicollis* Brisout, swept from ruderal vegetation growing at the confluence of the Wandle and the Thames, 24.vi.1998; notable (Hyman & Parsons, 1994) associated with various crucifers including charlock *Sinapis arvensis* which was present on the site.

Oedemeridae. *Nacerdes melanura* (L.), the wharf borer, a few adults were seen crawling on the vertical timbers and metal sheet piles of both Deptford Creek and the River Wandle. At Deptford, larvae (Fig. 4) were dug out at around mean high water level from timbers throughout the more tidal reaches of the creek. It is a fairly common species in the London area and Thames Estuary.

Phalacridae. *Oibrus flavicornis* (Sturm), several were beaten from overhanging vegetation in various areas of Deptford Creek and many were swept from rough
ground on either side of the Wandle where it empties into the Thames. Although not listed by Shirt (1987) this beetle was allocated status RDB-K, insufficiently known, by Hyman & Parsons (1992). It is thought to be associated with smooth hawkbit Leontodon autumnalis and ox-tongues Picris species, and is obviously well established in the London area. Olibrus affinis (Sturm) was also beaten from overhanging vegetation at Deptford. Although provisionally given notable B status by Hyman (1986), this was not confirmed by Hyman & Parsons (1992).

Diptera

Bombyliidae. Bombylius major L. was seen on the wing above one of the Deptford wharfs. Although usually associated with woodland rides and edges, it occurs in urban London along railway tracks and occasionally in gardens.

Dolichopodidae. Several species of Syntormon, characteristic of riverside and brackish vegetation, were among the commonest insects in both surveys, resting in clouds on the vegetation as it sprouted at the mean high water mark, and running on the algal covering of the vertical river walls inches above the outgoing or incoming tide.

Empidae. Hydrodromia stagnalis Haliday, a species of river and stream edges, occurred at Deptford.

Ephydridae. Scatella stagnalis (Fallén) was the commonest fly in Deptford Creek, running in untold thousands on the algal covering of the vertical river walls inches above the outgoing or incoming tide. It was also common in some areas of the Wandle, in similar situations.

Lauxaniidae. Homoneura tesquae Becker, one by sweeping sprouting vegetation above one of the Deptford wharfs, 8.vi.1998; notable (Falk, 1991a), a secretive species which breeds in leaf litter and other decaying vegetable matter.

Sciomyzidae. Pherbella cinerella (Fallén) occurred in both surveys; the larvae attack a variety of snail species in dry and wet habitats. Sepedon sphegea (Fab.) was found at Deptford: this widespread but local species is associated with marshes and streams where the aquatic larvae are predators of freshwater snails. Its presence here, in the tidal reach of the creek, suggests that it had been breeding further up river.

Stratiomyidae. Chorisops nagatomii Rozkošný, one by sweeping rough behind one of the Deptford wharfs; listed as notable by Falk (1991a), but fairly widespread in the London area.

Syrphidae. Many very common species occurred on flowers of garden angelica and other plants growing out from the mean high water mark or growing above the wharfs. Chrysotoma festivum (L.) was seen at Wandsworth. Eupeodes (formerly Metasyrphus) latiundulus (Collin), was found on flowers above one Deptford wharf, 6.viii.1998; notable (Falk, 1991a), its habitat preferences are uncertain: this site was a heat trap with the sun reflected off of sheltered brick walls. Xanthogramma pedissequum (Harris) occurred in both surveys and is generally quite common in the London area.

Tephritidae. Oxyna parietina (L.), sweeping above wharfs; although not included by Falk (1991a), this species is suggested to be notable B by Clemons (1996). It is fairly widespread in the London area on mugwort Artemisia vulgaris.

Hemiptera

Aphididae. At Deptford, Aphis fabae Scopoli completely encrusted some of the heads of garden angelica making them appear to be black-flowered. These plants
commonly sprouted out from the rotten timbers at the mean high water mark. The stunted buddleia bushes which overhung the creeks also suffered a very heavy aphid load, possibly also this common species, and were often dripping with honeydew.

Cicadellidae. *Idiocerus decimusquartus* (Schrank) and *I. stigmaticalis* Lewis were beaten from overhanging poplars and willows respectively on the Wandle.

Coccidae. *Pulvinaria vitis* (L.), females with their fluffy white egg masses were often seen at Deptford on alders growing out from the wharf tops.

Cimicidae. Several common species of *Anthocoris* and *Orius* were found beating overhanging vegetation. *Lyciocoris campestris* (Fab.) was very frequent in pigeon nests on ledges under a road bridge where it crossed the Wandle.

Corixidae. Several specimens of *Sigara dorsalis* Leach were caught by water netting in the non-tidal upper reaches of the Wandle, above the weirs. This was the only truly aquatic bug found during the surveys.

Hydrometridae. One specimen of *Hydrometra stagnorum* (L.) was found walking in matted vegetation on a ledge just above the water line in the non-tidal part of the Wandle.

Lygaeidae. *Metapodius ditomoides* (Costa), one specimen sweeping rough ground at the confluence of Wandle and Thames, 24.vi.1998. First discovered in Britain in Middlesex in the 1950s, since 1992 it has started to turn up again, apparently sometimes in numbers. *Nysius senecionis* (Schilling), at Deptford several were swept above the wharfs and at Wandsworth it was found in countless hundreds of thousands on rough ground near the confluence with the Thames (Jones. 1999a); although only discovered new to Britain in the early 1990s (Hodge & Porter, 1995), it is now seemingly fairly common.

Miridae. *Deraeocoris flavilinea* Costa, many swept and beaten from overhanging vegetation at Deptford on several occasions. First discovered in Britain in Essex in 1995 (Miller, in prep.), and until a few years ago confined in western Europe to Italy; it has spread across France and Germany and its arrival in Britain was accurately predicted. It is associated with sycamores and there are many small saplings growing out from the decaying wharfs.

Pentatomidae. *Aelia acuminata* (L.) occurred in both surveys on small plots of derelict ground adjoining the wharfs; this species is on the increase and is now common and widespread in the London area on bits of rough ground, ruderal sites, parks and gardens.

Reduviidae. *Empicoris culiciformis* (De Geer), several beaten from overhanging vegetation and in small pockets of leaf litter in even very exposed parts of Deptford Creek.

**Hymenoptera**

Apidae. The honeybee *Apis mellifera* (L.) and 4 common bumblebees, *Bombus* species, occurred, mainly visiting the flowers of garden angelica growing out from the rotten timbers at the mean high water mark.

Bethylidae. *Bethylus boops* Thomson, sweeping, above one of the Deptford wharfs, 25.viii.1998. Very little is known about this species which was only recently recognized as new to Britain (Burn, 1997). Although this appears to be only the tenth British specimen, the fifth, sixth, seventh and eighth specimens were recorded from my old Nunhead garden in the last 6 years and the ninth was found recently in Morden Cemetery, indicating that this creature is well established in south London (Jones. 1999b).
Chrysididae. *Omatus auratus* (L.) occurred in both surveys and one specimen of *Chrysis ignita* (L.) was seen flying round a grey drainpipe (mistaken for a tree trunk?), above one of the Deptford wharfs where walls acted as a sun trap.

Colletidae. *Hylaenus signatus* (Panzer) was swept on rough ground at the confluence of Wand and Thames, 24/VI.1998; notable B (Falk, 1991b). It is associated with weld and mignonette, *Reseda* species, and these were present on the site.

Eumenidae. *Microdynerus exilis* (Herrich-Scheffer), found twice on flowers growing above the Deptford wharfs; notable B (Falk, 1991b). First discovered in Britain in the 1930s and possibly a recent arrival and still spreading, it has turned up elsewhere in urban south London.

Formicidae. *Lasius niger* (L.) was found throughout both survey areas in almost any situation above the mean high water mark including right at the mouth of Deptford Creek at the junction with the Thames, on exposed concrete surfaces even within the splash zone.

Pompilidae. *Auplopus carbonarius* (Scopoli), one found running on the ground above one of the Deptford wharfs; notable B (Falk, 1991b), supposedly a woodland species and seemingly out of place on the creek, but the area was a bit of a sun trap.

Sphecidae. Several common species were found including stem-nesting and wood-nesting species. Several of the crumbling dry rotten timbers about 1 metre above mean high water mark had extensive borings thought to have been made by the *Ectemnius* and *Pemphredon* species found as adults on leaves and flowers elsewhere above the wharfs.

Xyphydriidae. *Xyphydria camelus* (L.), crawling in the grass above one of the wharfs at Deptford and thought to have emerged from a small log apparently dumped there. This log, probably ash, had cramp balls, *Daldinia concentrica*, growing on it and the small fungus beetle *Biphyllus lunatus* feeding inside them. Both species seem very out of place and are unlikely to have arrived by natural means.

**Lepidoptera**

Lycaenidae. *Celastrina argiolus* (L.), the holly blue, seen flying above the Deptford wharfs and a common species of urban south-east London. *Polyommatus icarus* Rottemburg, the common blue, was found at Wandsworth.

Lymantridae. *Orgyia antiqua* (L.), the vapourer, a caterpillar was found on herbage above the walls of the River Wandle.

Noctuidae. Several common species were found including a fully grown caterpillar of the old lady, *Mormo maura* L., found in leaf litter on a very narrow ledge on one of the most exposed sections of Deptford Creek, near the junction with the Thames. At this time, the area above the wall was being developed and had been a busy building site for at least 18 months with heavy machinery moving about all the time and precious little vegetation. Plants sprouting from wall timbers were also very sparse and it is a mystery what the caterpillar had been feeding on.

Nymphalidae. The usual common species including: *Aglais urticae* (L.), the small tortoiseshell, several adults seen on the wing and a chrysalis found attached to some sheet metal piling at Deptford just inches above the mean high water mark. *Vanessa atalanta* (L.), the red admiral and *Cynthia cardui* (L.), the painted lady, several seen visiting flowers above the wharfs and resting on the wooden timber piles in the sunshine. *Polygonia c-album* (L.), the comma, one adult seen at Deptford and several caterpillars beaten from hop plants overhanging the walls of the creek. The decline of the comma during the end of the 19th century, linked to the decline of the hop
industry, and its recovery during the middle part of the 20th century, when it appeared to switch to nettles, is well known. How ironic, then, that in Deptford Creek it is breeding on the hop plants which overhang the flood defence walls and which cascade down into the water where once barge-loads of dried hops from the fields of Kent were shipped to the breweries of London.

**Neuroptera**

Sisyridae. *Sisyra fuscata* (Fab.), was beaten from vegetation overhanging the River Wandle. This common species has aquatic larvae which breed inside freshwater sponges.

**Odonata**

Aeshnidae. Unidentified blue/green *Aeshna* species were seen hawking up and down the river walls at both Wandsworth and Deptford; they could easily have been breeding in the freshwater section of the Wandle, but the Deptford specimen must have flown some distance from its breeding site.

Calopterygidae. *Calopteryx splendens* (Harris), a female was seen fluttering around the freshwater part of the Wandle and was more than likely breeding there.

Coenagrionidae. *Enallagma cyathigerum* (Charpentier), the common blue damselfly, was seen on several occasions on the Wandle and was no doubt breeding there.

**Orthoptera**

Acrididae. *Chorthippus parallelus* (Zett.), the meadow grasshopper, was found above one of the wharfs at Deptford, seemingly very out of place and far from any meadow, although it is generally recorded from a variety of rough grassy habitats.

**Thysanura**

Lepismatidae. *Lepisma saccharina* L., the common household silverfish, one beaten from overhanging vegetation at Deptford; it is unusual to find it out of doors, but there were many buildings nearby.

Machilidae. *A Petrobius* species, probably *P. maritimus* Leach or *P. brevistylis* Carpenter seen running about in cavities and crawling on the river wall of Deptford Creek near the junction with the Thames, just above the mean high water mark, its typical habitat.

**Araneae**

Araneidae. Although the common garden spider *Araneus diadematus* Clerck was found on both surveys, the most obvious orb-web spider on both the Wandle and Deptford Creek was *Larinioides sclopetarius* (Clerck), a very distinctively marked species (Fig. 5). It occurred along all banks of both tributaries, sheltering in dry crevices and beaten from overhanging vegetation or sitting in its orb webs spun across emergent vegetation, decaying timbers, metalwork and crumbling brickwork. Although a fairly local species, it is often associated with buildings, bridges, fences and walls near water, especially those lining rivers and canals.

Gnaphosidae. *Micaria pulicaria* (Sundevall), a warmth-loving species, was found once at Deptford, running on bare ground behind a derelict wharf.
Salticidae. _Salticus scenicus_ (Clerck), the common zebra spider, occurred on the vertical walls of both surveys, even out into the bare and exposed steel and concrete of the Thames, inches above the water.

Segestridae. _Segestria florentina_ (Rossi) was found only on the River Wandle. Here it had colonized a short sheltered stretch of non-tidal river. on both banks, where a concrete topping overhung the walls creating a sheltered series of nooks and crevices. The characteristic spoke-and-hub webs lined this section of the river, many shed skins were found in the leaf litter on a small shelf below and one large female was discovered in her burrow behind a small piece of wood prised off from the concrete. Despite exhaustive searching along seemingly similar habitat at Deptford, none could be found there. This very local but fairly widespread species is associated with old walls, especially in ports, and is thought to have been originally introduced from the Mediterranean in shipping.

Tetragnathidae. Several immatures of a _Tetragnatha_ species were found in the buddleia bushes overhanging a sheltered dock inlet at Deptford; they could not be identified. There are several species in the genus, often found near water.

### Isopoda

Armadillidiidae. The common _Armadillidium vulgare_ (Latreille) was frequent at Deptford, but on rough ground above the mouth of the Wandle the very local _Armadillidium nasatum_ Budde-Lund was the only species to be found, in large numbers under rough concrete rubble.

Clypistidae. _Clypistus convexus_ (De Geer) was found in a decaying timber pile at Deptford. It is primarily a coastal species of rocky or stony areas above the tidemark, but it has also colonized quarries, walls and waste ground.

Ligiidae. _Ligia oceanica_ (L.), the sea slater, was very common on the tidal walls of Deptford Creek, occurring in rotten timber and under stones on the foreshore exposed at low tide. One was also found crawling up a wall in the tidal part of the Wandle. Although completed some time ago, the atlas of woodlouse distributions in Britain (Harding & Sutton, 1985) shows _Ligia_ to be a truly marine animal, occurring only on the coast. According to that study _Ligia_ was unknown from the Thames in London. Wandsworth is by far the furthest inland that this creature has been found, but this is not totally unexpected.

Trichostraca. _Androniscus dentiger_ Verhoeff was dug from timber piles at Deptford. A widespread and moderately common species, it is associated with old walls, coastal cliffs and other exposed habitats.

Sphaeromatidae. Three common species were found at Deptford Creek, under stones on the foreshore exposed at low tide: _Sphaeroma hookeri_ Leach. _S. monodi_ Bocquet et al. and _S. rugicauda_ Leach.

### Myriapoda

Polyxenidae. _Polyxenus lagurus_ (L.), one of Britain’s smallest and most curious millipedes, was found in very large numbers at Deptford, in soil and leaf litter, crawling on bare walls and sheltering in nooks and crannies in even the most exposed parts of the creek. A widespread, but rather local species, it has two distinctly different habitat types. Inland it is found beneath the bark of old dead trees, but also on the ground beneath stones and leaf litter. It also occurs on old walls and in exposed coastal habitats beneath spare halophile (salt-tolerating) vegetation, down
Fig. 4. Larva of *Nacerdes melanura*, the "wharf borer", dug out from timbers at and even below the mean high water mark. Photo R. A. Jones.

Fig. 5. The characteristic orb-web spider *Larinioides sclopetarius*, a regular inhabitant of the riverside, and often found sitting in its webs spun across emergent vegetation, timber piles, ironwork and concrete. Photo R. A. Jones.
to the shore. It lives in small colonies, amidst a mess of shed skins (Fig. 6), and feeds on decayed plant matter.

**Amphipoda**

Gammaridae. Very many unidentified *Gammarus?* species were found at Deptford, under stones on the foreshore exposed at low tide.

Talitridae. *Orchestia gammarella* (Pallas) was dug out from a timber pile at Deptford.

**Mollusca**

Helicellidae. Several specimens of *Hygromia cinctella* (Draparnaud) were found on narrow ledges along part of the non-tidal Wandle. For many years this species was confined to a small area of South Devon, but in the last 40 years it has started to spread and is now quite widespread in southern England. This was exactly the same stretch of the river where the large Mediterranean spider *Segestria florentina* occurred, so it may have been very sheltered.

Limacidae. A very large specimen of *Limax flavus* (L.) was seen crawling along one of the old brick river walls of Deptford Creek. Although local, it is a widespread species usually found near human habitations.
DISCUSSION—"BROWNFIELD CORRIDORS"

The natural history of both Deptford Creek and the River Wandle today, exemplified by the insects and other invertebrates occurring there, is clearly an ecology based on invasion, recolonization and adaptation to decaying man-made structures.

There is little doubt that new things will continue to turn up at both sites. It is probably no surprise that the nationally scarce Adonis ladybird, *Adonia variegata*, noted for its migrations, appeared first on that exposed and scruffy foreshore of Dreadnought Wharf, at the very north end of Deptford Creek, and on a tiny derelict corner near the mouth of the Wandle, for running past both is perhaps the largest wildlife corridor in England—the Thames. True, the river banks in this part of London are not what one might describe as prime natural habitats, but they are littered and lined with half derelict and overgrown sites along their entire length right out into the “proper” countryside of the Thames Estuary in Essex and Kent.

These derelict plots, formerly described rather disparagingly as “waste” places, have long been an overlooked resource for nature conservation. Even today they are often dismissed under the heading “brownfield” sites, implying that they are not green and therefore ripe for development at no loss to the natural world. Naturalists and ecologists tend towards the other direction and prefer to describe sites as “ruderal” in an attempt to avoid these negative associations. Study of these sites often shows that, just like Deptford Creek and the River Wandle, they may not be as aesthetically pleasing as verdant forests, rolling hills, purple moors or green valleys, but they do have a valid and varied natural history interest.

The invertebrate interest of urban derelict sites has generally received scant attention. Ironically, London’s contribution to this study began long ago, with the surveys of the City’s bombed sites after the last war by members of the London Natural History Society (Le Gros, 1949; Owen, 1951; Parmenter, 1953; Jones, 1954, etc). At that time, interest in the sites was limited to an academic study of colonization and establishment, and there was no suggestion of preserving the broken-down buildings and rubble-strewn areas for their natural history value. Attitudes have changed subtly since then. The idea that invertebrates on brownfield sites might have some conservation value was explored briefly by Lonsdale (1991) and has recently achieved greater status in various reports. Gibson (1998) makes the observation that of the nationally rare and scarce species listed by Kirby (1995) in a review of habitat preference, an estimated 12–15% of them are recorded from artificial (i.e. ruderal) habitats.

In particular, ruderal sites offer in abundance a habitat which is fast disappearing from the countryside at large—bare ground with sparse vegetation. This is important for insects because the soil in such a microhabitat is usually warmed by the sun much more than a turf of long grass and dense herbage. Changes in grazing practice and other land management techniques have meant that what were once much more open areas of downland, grassland and heathland are now threatened by scrub invasion. Ruderal sites are fast taking over as important habitats in their own right because they are home to many warmth-loving invertebrates, perhaps on the northern edge of their distribution in Europe. Indeed, an unexpected feature of both tributaries was only revealed on warm sunny days when certain south-facing buildings and walls reflected the sun’s heat and created many blisteringly hot sun-traps.

This is not to say that the entire fauna of the rivers exists because it needs such a microhabitat, but it adds another layer to the habitat complexity which makes up the lines of crumbling wharfs, adding to their ability to act as wildlife corridors through
London. It is becoming clear from reports of other surveys in the Thames Estuary out into Essex (C. W. Plant, pers. comm.), that the chain of these ruderal sites is already acting as a corridor, with the discovery of many unusual, uncommon and new invertebrates being found right along their length into the heart of the East End. The appearance of the “new” bugs *Nysius senecionis* and *Deraeocoris flavilinea* in several localities can only support the notion that these small London rivers are acting as natural highways, allowing movement of invertebrates along them.

The vertical flood defence walls and the meagre strips of earth behind are a sorely underestimated habitat for wildlife. It has become patent clear that the dowdy appearance of these two creeks to the unguided eye should not be allowed to overshadow the fact that there is teeming life, diverse biology and important ecology.

This fact has been ably demonstrated to the Creekside Renewal Programme (Steele et al., 1999), the commissioning body for surveys on Deptford Creek which included not only terrestrial invertebrates but also marine invertebrates, plants, birds, fish and other animals. Such was the interest generated by these surveys that the idea of “conserving” the derelict nature of the crumbling walls has emerged. Unfortunately, repair of a river flood defence is a major civil engineering project and will necessitate complete destruction of certain parts of the walls. But this will be done in a piecemeal manner so as not to scour the whole creek clean in one sweep. The new walls will include various design features, including wooden uprights and horizontal ledges around the mean high water mark to deliberately accumulate silt, in the knowledge that these will shortly be colonized by plants, then invertebrates, mimicking the decay and colonization which has occurred through neglect during the last 50 years. Some of the sound walls, comprising steel sheet piling and engineering brick and not in need of repair or renewal, will have timber cladding placed on them to encourage this marginal growth specifically as an important and interesting wildlife habitat and to maintain the integrity of the “brownfield corridor”.

The value of ruderal sites for plants, invertebrates and other animals has been recognized for many years, but there are few examples, in London at least, of major redevelopment projects taking this sort of initiative to allow wildlife to continue having its natural colonizing effect on the environment.

**Conclusion**

The study of natural history has long been a pursuit of natural wonder. Historically it was spurred by a reverence to the creator subtly revealing his designs to the enquiring disciples of natural philosophy. More recently it has been driven by the professional engine of biological and ecological science. But wonder is still to be had out there: at each visit to Deptford Creek, where most signs of life have been buried and shored-up under sheet-pile, concrete and engineering brick, I still wonder at the audacity of nature to claw back what was once her own.

**Acknowledgements**

Thanks are offered to the many and various people who helped with these surveys. Mr M. Canty was foolhardy enough to ferry an entomologist about in his boat during high-tide visits to the river walls, and he did not complain too loudly when rotten wood, soil, leaf litter, twigs and live invertebrates showered down into it. Mr J. Ducker assisted on some of the field trips. Messrs P. J. Hodge, C. W. Plant, R. D. Hawkins and J. Porter identified and confirmed some of the insect specimens. Mr N. Bertrand assisted with details of the local flora and allowed me to use his
photographs in this paper. Jill Goddard of the Creekside Renewal Programme, a partnership between the London Boroughs of Lewisham and Greenwich, commissioned the survey of Deptford Creek and arranged access to the various wharf sites. Valerie Selby of Wandsworth Borough Council’s Nature Conservation Centre commissioned the survey of the Wandle and negotiated access to adjoining land.

REFERENCES


SCARCE WOOD-DECAY BEETLES IN A RIVER FLOODPLAIN FARmed LANDSCAPE IN THE UPPER THAMES VALLEY

The National Trust's Coleshill and Buscot Estate near Faringdon in the far west of VC22 (Berkshire—but currently within the administrative county of Oxfordshire) comprises a very large acreage of intensively managed farmland, probably no better or worse than the average farmland of the area. However, a recent biological survey revealed a surprisingly interesting range of deadwood-breeding beetles, including some generally regarded as collectively indicative of relict old forest conditions (Harding & Rose, 1986). In this respect the key feature of the estate is that it coincides with low-lying ground along the Thames and its minor tributary the River Cole. The two rivers include networks of field drains and hedgerows lined by mature and overmature trees, including old pollards as well as standards, and with crack willow, ash, oak and native black poplar. Only a few hundred years ago this would have been grazing marsh country and effectively an open pasture-woodland system—Buckland & Dinnin (1993) have pointed out that many localities with relatively rich saproxylic faunas have a core of old wetland, the wetness of the ground conditions having protected the tree cover from intensive exploitation for timber or small wood products. Thus today's fauna is a survival from an earlier landscape. Similarly interesting faunas have been noted also very close by to Buscot and Coleshill, along the Thames (M.F.V. Corley, in Peachey, 1982) and in other river floodplains, e.g. in the Severn Vale of Gloucestershire (Atty, 1983), the River Teme in Worcestershire (Whitehead, 1996), along the River Cam in Cambridgeshire (Kirby & Lambert, 1992) and the Darent in Kent (Williams, 1990).

Six nationally scarce (Hyman, 1992) beetles were found within the farmland:

Agrilus pannonicus (Pill. & Mitt.) (Buprestidae)—Nationally Scarce Category A—Kilmester Farm, SU251965, extensive borings and exit holes in bark of dead hedgerow oak, 9.viii.1995.

Agrilus simiatus (Olivier)—Nationally Scarce Category A—Step Farm, SU275951, characteristic D-shaped exit holes in dead hawthorns in old pasture, 7.viii.1995; Furzehill, Colleymore Farm, SU259940, two adults beaten from old hawthorn in old pasture, 8.viii.1995.

Ctesias serra (Fab.) (Dermentidae)—Nationally Scarce Category B—Step Farm, old hedgerow pollard, SU278957; and Manor Farm, old willow pollards, SU264992.

Anisoxyla fuscula (Illiger) (Melandryidae)—Nationally Scarce Category A—Furzehill, Colleymore Farm, SU259940, three beaten from dead hawthorn in old pasture, 8.viii.1995; Kilmester Farm, SU245974, one beaten from a dead young willow, 9.viii.1995; Snowswick Copse, SU229958, one beaten from a dead hawthorn at woodland edge, 17.viii.1995.

Conopalpus testaceus (Olivier) (Melandryidae)—Nationally Scarce Category B—Colleymore Farm, one beaten from old oak, SU255924.

Cossonus parallelepipedus (Herbst) (Curculionidae)—Nationally Scarce Category B—Dead adults abundant plus a few live in trunk of large fallen poplar along drain
south of Waterloo Copse, SU239925, 17.viii.1995; also remains of dead adults in trunk of willow pollard at SU257930.

John Campbell (pers. comm.) of the Oxfordshire Museums Service has additionally taken Ischnomera sanguinicollis (Fab.) (Oedemeridae)—Nationally Scarce Category B—on the estate.

Cossonus parallelepipedus is a regular inhabitant of old crack willow pollards along river valleys and in other grazing marsh situations, while Anisoxya fuscula is often found in these situations as well, e.g. Alexander (1987). Agrilus pannonicus is, however, most likely a recent colonist. Its general increase in the western suburbs of London has been well-documented (Hackett, 1995) and the present record suggests that the species is moving westwards along the Thames Valley. The estate also includes two landscape parks, Coleshill Park and Buscot Park, although neither is known to be long-established and few deadwood beetles were found in them. Buscot Park had no accessible deadwood at the time of the survey, and the little available in Coleshill Park revealed Bitoma crenata (Fab.) (Colydiidae). Pediacus dermestoides (Fab.) (Cucujidae) and Phymatodes testaceus (L.) (Cerambycidae). Ctesias serra has been found at Coleshill previously. Certainly not of the same quality for deadwood fauna as the surrounding farmland! A large area of ancient woodland lies to the east of Buscot Park—Badbury Forest—but, as with the parkland, the deadwood beetle fauna is not exceptional. A long history of exploitation for wood products has resulted in a relatively poor fauna. The most interesting species found during the survey were Platycis minuta (Fab.) (Lycidae) and Mycetophagus multipunctatus (Fab.) (Mycetophagidae), of which only the former has nationally scarce status. The latter is very much a river floodplain species in the western parts of its GB range and likely therefore to occur also outside of this woodland, with the fauna described above.

Thus we have the interesting situation where ancient semi-natural woodland and historic parks are relatively poor in wood-decay fauna while the conventional farmland is relatively rich. K. N. A. Alexander & A. P. Foster, National Trust, 33 Sheep Street, Cirencester, Glos GL7 1QW.

References


MICROPYGUS VAGANS PARENT (DIPTERA: DOLICHOPODIDAE), A NEW ZEALAND FLY IN THE BRITISH ISLES

PETER J. CHANDLER
43 Eastfield Road, Burnham, Slough, Berks SL1 7EL.

Abstract. A species of Dolichopodidae (Diptera) native to New Zealand, *Micropygus vagans* Parent, has been present in Ireland since 1971. It was found in Northern Ireland in 1987 and in several areas of south-west Scotland in 1994. The means and timing of introduction and rate of spread are unknown, but it was found to be numerous and well established at several sites.

INTRODUCTION

The occurrence of a dolichopodid of New Zealand origin in the British Isles has already been reported in the newsletter of the empid and dolichopodid study group (Chandler, 1996) and it was consequently included in the new checklist of British Diptera (Chandler, 1998). Here more detail is provided of the characters of this species and of the known records.

This species was first recognised in Irish material and was mentioned as an undetermined species of Campsicneminae (now included in Sympytheninae) by Chandler (1988), when it was thought to be near to *Campsicnemus* Haliday, with which it was compared. The Irish specimens were examined by Peter Dyte, who considered that the species was more nearly related to *Sympycnus* Loew, but clearly not any of the known European species of this or related genera.

The matter rested there until the species was found in numbers in south-west Scotland, during the Dipterists Forum summer field meeting based at Ayr in 1995. It was then decided to submit specimens to Dan Bickel of the Australian Museum, Sydney, who was revising southern hemisphere genera of Sympycninae and he rapidly determined them as *Micropygus vagans* Parent, a species endemic to New Zealand.

It was thought for several reasons that this species had probably been introduced to the British Isles. It has been found in numbers at several localities, some of which are landscaped parks with gardens associated. It is apparently absent from earlier collections and one of the Irish sites is close to the residence of A. H. Haliday, the first author to monograph the Dolichopodidae of the British Isles, who might have been expected to have found it if it was present in the area in the 19th century. It is also well known that a number of other organisms, especially Coleoptera and terrestrial planarians, have been introduced to the British Isles from New Zealand, although no New Zealand Diptera have previously been recorded here.

The date and means of introduction of *M. vagans* is unknown, but it may have been brought in with plant material or soil around imported plants. It was already present in Ireland by 1971 and is widespread there, at least in the east of the island. In Scotland it is still known only from Ayrshire and Kirkcudbright, but is well established there. It may be restricted by climatic requirements and it will be interesting to see if it is spreads to other parts of the country.

The genus *Micropygus* is endemic to New Zealand and not recorded elsewhere. All of the 16 known species were described by Parent (1933), most of them being recorded from only one or two localities. *M. vagans* was recorded from six scattered localities, mostly in the South Island, taken in x, xii-i and vi. Nothing was recorded
concerning the habitats or biology of any species of *Micropygus*. Because the genus was described after 1930 and Parent did not designate a type-species, the generic name was unavailable until it was validated by Bickel & Dyte (1989), from which it now dates.

**Description**

This is a rather small fly of undistinguished appearance, the body approximately 2mm long, the wing 2.6–2.8 mm (male), 2.6–3.1 mm (female). The body is predominantly dark greenish, more or less covered with grey dusting, and the legs are mainly yellow. The wing is mainly dark grey in appearance with brown veins, but with a strip including the posterior crossvein appearing whitish in both sexes, which is due to the absence both of pigmentation in the vein and of microtrichia on the adjacent part of the wing membrane (Fig. 1).

Unlike many members of the family, there are no obvious secondary sexual characters in the male. Apart from genital characters, the female has the face a little broader than in the male; Parent referred to presence of a ventral bristle on the mid tibia in the female, but this has not been found in the material available. The general description below therefore refers to both sexes.

The head is grey dusted, with areas on the frons appearing dull black when viewed from certain angles. The face is whitish grey and is narrow and parallel-sided below the antennae (a little broader in the female), then widening sharply to the mouth margin. The antennae and palpi are black. The antenna has the scape bare, pedicel with short bristles and third segment (first flagellomere) triangular, a little longer than broad, bluntly rounded apically and densely covered with hairs; the arista is set dorsally at the basal third of the third segment and is slender, about 3 x antennal length. The head bears 4 strong black bristles posteriorly, comprising a pair of divergent postocellars and an erect outer vertical bristle near the hind corner of each eye.

The thorax is humped, greenish brown in ground colour with thin grey dusting on the dorsum, which also bears three vague dark stripes which are widely interrupted around the suture, being present anteriorly before the first dorsocentral bristle and also posteriorly with the laterals on the dorsocentral rows. Acrostichal bristles are absent, but there are 5 pairs of strong erect dorsocentrals, 2 of them being presutural. The pleura are more strongly grey dusted.

The coxae are dark grey; the femora are vaguely greyish dorsally, this dark colouring usually not reaching the base or tip of the femur; the legs, including the trochanters, are otherwise dull yellow. Mid femur has anterior and posterior preapical bristles, the hind femur only an anterior preapical. Mid tibia has 2 long anterodorsals, situated at a third and two-thirds of its length, and a single posterodorsal basal to the more basal of the anterodorsals: these bristles are longer than the tibial width. Hind tibia has a row of about 8 dorsal bristles, of which 4 are usually longer and equalling tibial width, and 4 posteroventral bristles. Hind basitarsus (first tarsomere) is shorter than the second segment of the hind tarsus.

The wing (Fig. 1) is of grey appearance due to the presence of minute close-set microtrichia covering the membrane, except in a strip on either side of the posterior crossvein. The anterior crossvein is absent. The wing veins are brown except for the greater part of the posterior crossvein, which thus appears white in contrast to the rest of the wing. The halteres are yellow.

The abdomen is dark greenish with thin grey dusting. The male genitalia (Fig. 2) are small, black and held vertically; the cerci are relatively large with fine hairs. The
Figs 1–3. Micropygus vagans Parent. 1. Male wing. 2. Male genitalia: a, lateral view; b, ventral view. 3. Female genitalia: a, lateral view; b, dorsal view. Abbreviations: aed = aedeagus, cer = cercus, et = epiproct, gc = genital capsule, ht = hypoproct, sur = surstylus, S = sternite, T = tergite. Scale lines: wing 0.5 mm, others 0.25 mm.
female genitalia (Fig. 3) are slender and retracted in situ, with the epiproct bearing blunt spinose setae and the cerci strap-shaped and black, with a single apical seta.

**Recognition**

*M. vagans* runs in the keys by Assis Fonseca (1978) to couplet 12 in the male key to genera and couplet 13 in the female key. This is because the “disal vein” (*M*<sub>1+2</sub>) is unforked and running straight to the margin parallel to the preceding vein (*R*<sub>4+5</sub>), antennal scape simple, arista set basally on third antennal segment, proboscis and front coxae without spines, a preapical bristle present on the hind femur, acrostichals absent and 5 pairs of dorsocentrals present.

In both male and female keys the choice is then between *Campiscnemus*, which has the face narrowed below the antennae but then immediately broadened to the mouth margin, and other genera in which the face is narrowed from the antennae to the mouth margin. *Micropygus* thus differs from both alternatives in having the face parallel-sided on the upper part and then sharply broadened to the mouth margin.

As mentioned above, there is some general resemblance to *Sympycnus*, which runs elsewhere in the keys by Assis Fonseca because the British species have uniserial acrostichals although these are absent in some exotic species. *Sympycnus* species also have 6 pairs of dorsocentrals.

According to the key by Parent (1933), *M. vagans* shares the characters of yellow tibiae and the white marking on the posterior crossovein with five other species of the genus, but all of these have one or more additional white markings on the wing and some also differ in chaetotaxy of the legs.

This wing character also enables immediate recognition of *M. vagans* among other small nondescript Dolichopodidae found in the British Isles.

**Distribution**

The Irish and British records are listed chronologically. Without recent Irish records it is not possible to speculate on how widespread it may now be there. The most recent list with locality data of Irish Dolichopodidae was by Dyte (1969), following his collecting trip in 1967. I collected Dolichopodidae, among other Diptera, widely in Ireland from 1968 to 1987, enabling Assis Fonseca (1978) to add six species and over thirty new county records to those previously recorded from Ireland. Prior to first finding this species in 1971, I had spent seven weeks collecting in Ireland and this find was on my fifth visit. The Irish dolichopodid list was updated by Speight & De Courcy Williams (1992) and Speight and others have also published several other notes on species additional to the Irish list, but have not reported this species.

The widespread occurrence of the species in Ayrshire and the adjacent part of Kirkcudbright suggests that *M. vagans* has been established in that part of Scotland for many years, but has passed unnoticed through lack of previous visits by dipterists. It is possible that Culzean (pronounced Cullane) Castle Park was the point of introduction, but until more is known of its biological requirements, the means of spread must remain uncertain. My records are cited as PJC; most specimens are in the collections of the recorders or that of Peter Dyte, but examples will be deposited in the National Museums of Scotland and other national collections.

IRELAND: Dublin, Howth (O2837), mixed woods on summit of hill, 17.vii.1971, female (PJC); 27.vi.1975, male and female (PJC).

Down, Crawfordsburn Country Park (J4481), 2 and 3.vii.1987, numerous by stream bordered by Rhododendron thicket in beech woodland (PJC).


Ayrshire, Bridgend, Loch Winnoch (NS348595), 6.vii.1995, frequent in wooded ravine with stony stream; presence of ramsons (Allium ursinum) suggested a base-rich influence (C. M. Drake).

Ayrshire, Sevenacres Mains Wood (NS332452), 6.vii.1995, 2 males, 1 female in secondary damp birch woodland on sand (C. M. Drake).

Ayrshire, North Lissens (NS323479), 6.vii.1995, frequent in oak/beech woodland with a stream and a few boggy patches (with Luzula and Phalaris) (C. M. Drake).

Ayrshire, East Newton Valley (NS519383), 8.vii.1995, very abundant by heavily shaded wooded stream (C. M. Drake).

Kirkcudbright (Dumfries & Galloway), Wood of Cree RSPB Reserve (NX3870), 7.vii.1995, 2 males, 3 females by small stream under oaks (C. M. Drake).

Kirkcudbright (Dumfries & Galloway), Loch Trool (NX415803), 7.vii.1995 male and female by wet drainage ditch alongside upland track with moorland vegetation, the only open site but near a stream under a few trees (C. M. Drake).

Wooded streams or ditches are a common factor to a number of the sites and in two cases wooded lake margins. However, at least one site lacked open water and the last mentioned site was away from trees. The woodland types are quite varied and other vegetation also quite variable. As with so many Dolichopodididae, development in damp soil or mud seems most likely, but knowledge of the early stages of members of the family with this general habitat is very limited.

Acknowledgements

I am grateful to the other collectors involved for kindly permitting me to include their data. I am especially indebted to Dan Bickel for the determination of this species and to Peter Dyte, both for his assistance throughout and for his very useful comments on the manuscript.

References


SHORT COMMUNICATION

Procas granulicollis Walton (Col.: Curculionidae) discovered in Surrey—The known world distribution of this weevil has until now been the hill country of the north and west of Britain—in Cumberland and Kirkcudbrightshire (Hyman, 1992) and three Welsh vice-counties (Fowles, 1992). It was therefore a considerable surprise when one was found amongst material taken on Holmwood Common (TQ1746), near Dorking in Surrey. Just the single specimen had been captured, by sweep-netting along a rideside in rather nondescript secondary woodland with open bracken-filled glades. 29.vii.1997. The situation of bracken in glades within ungrazed woodland is precisely as described for Welsh localities (Fowles, 1992).

Following up on this discovery, John Owen and other coleopterists visited the spot, 2.v.1998, and had no difficulty in finding P. granulicollis in some numbers by sieving bracken debris. They saw about 30 examples and estimate the population density at some spots to be around 10 per square metre. Only two small spots were closely examined. In one, where the weevil was plentiful, there were numerous seedlings of Corydalis claviculata. Many seedlings showed signs of being eaten and one weevil was found on a plant. At the other spot, about 100 m distant, there were plenty of weevils but not a sign of the plant. Corydalis has been identified as a key feature of the known sites and is suspected to be the main foodplant of the adult weevil.

Holmwood Common is a large area of common land, ungrazed since the 1950s, which has developed extensive cover of secondary oak and birch woodland. It is underlain by Cretaceous Wealden Clay and soils covering the site are mainly poorly drained silty or clayey surface water gleys, grading locally to better drained acidic sandy soils (Wickham 1 Association). The bulk of the woodland falls within the W10, Quercus robur—Pteridium aquilinum—Rubus fruticosus community of the National Vegetation Classification (Rodwell, 1991). The W10 community is characteristically found on base-poor brown soils throughout the temperate lowlands of southern Britain, often in places like Holmwood which have poor drainage and a tendency for seasonal waterlogging. The woods are otherwise unremarkable in terms of botanical and entomological interest due to their recent secondary origin.

My thanks to Mike Morris for identifying the weevil, to John Owen for carrying out some follow-up recording, and to Janet Lister for information on geology, soils and vegetation.—KEITH N. A. ALEXANDER, The National Trust, 33 Sheep Street, Cirencester, Gloucestershire GL7 1RQ.

REFERENCES


BUCHANANIella CONTINUA (B. WHITE) (HEMIPTERA: ANTHOCORIDAE) ESTABLISHED IN BRITAIN

P. Kirby
21 Grafton Avenue, Netherton, Peterborough, Cambs PE3 9PD, UK.

Abstract. The anthocorid Buchananiella continua (B. White) has been found established in Buckingham Palace Garden, London. Characters for identification are given.

INTRODUCTION

Buchananiella continua (B. White) is a pan-tropical species, but has been reported quite widely in the western Palaearctic in recent decades, and in some places at least has established breeding populations. Péricart (1972) lists records from France, Portugal, Italy, Madeira and the Azores. B. continua has previously been reported from Britain only as a casual importation at Liverpool Docks (Péricart, 1972). Captures of a number of individuals from Buckingham Palace Garden, Middlesex, in 1995 and 1997 strongly suggest an established population in Britain. Single males were captured in malaise-traps operated by Mr C. W. Plant in the periods 3.viii.–7.ix.1995 and 7–22.ix.1995; I took a further three males and seven females by active collecting on 21.viii.1997. No nymphs have been found, but the number of individuals captured and the time-span over which they have been found makes it almost certain that an outdoor breeding population has been established over at least a three-year period.

IDENTIFICATION

B. continua is a small and, to the naked eye at least, a rather undistinguished-looking bug. The length of the Buckingham Palace specimens varies from 2.2 to 2.35 mm for males and 2.25 to 2.4 mm for females. The coloration is a little variable. The lightest individuals are an almost uniform mid-brown, with the scutellum and cuneus rather deeper and more reddish in colour and the head darker black-brown. In the darkest individuals head, pronotum and scutellum are a deep rather shining brown-black in colour, the rear corners of the pronotum somewhat lighter, the forewings a somewhat lighter brown, the cuneus darker, somewhat reddish towards the tip. The wing membrane is dark grey. The legs are pale yellow-brown, the femora sometimes slightly infuscated. The first antennal segment is almost black and shining; the second pale at the base and darkened, almost black, at the tip; the third and fourth somewhat darkened. The second antennal segment is considerably broader than the third and fourth, more so in the male than the female. The males from Buckingham Palace Garden are, on the whole, somewhat lighter and more uniform in colour than the females, but with more extensively darkened second antennal segments, almost the entire segment being darkened in one individual. The whole of the dorsal surface has moderately long pale pubescence which, however, is sufficiently pale and fine not to be immediately conspicuous in some lights.

To the naked eye, the size and coloration give B. continua the appearance of a very dark Cardiastethus fasciiventris (Garbiglietti). It is also somewhat similar to Orius spp., for which it could conceivably be passed over in the field. Under the microscope, however, it is immediately distinctive. The pronotum is of different appearance to that of any other British anthocorid. A central longitudinal furrow in the rear half of the pronotum divides into two widely spread arms running laterally
at approximately the mid-point of the pronotal length. *Cardiastethus fasciiventris* has a similarly placed transverse furrow, but only a trace, at most, of a longitudinal furrow; *Dufouriellus ater* (Dufour) has a longitudinal furrow, but lacks the transverse arms. The male genitalia of *B. continua* are also different to those of any other member of the British fauna. The shape of the genital capsule, if pulled only slightly clear from the abdomen, is sufficient for identification without the need for dissection. The overall appearance and chief distinguishing features of *B. continua* are shown in Fig. 1.

*B. continua* is keyed and illustrated in Péricart (1972). Attempting to identify it using the key in Southwood & Leston (1959) would probably lead to an unsatisfactory outcome; *B. continua* does not comfortably fit the couplets. The most likely end-point is probably *Xylocoridea brevipennis* Reuter, depending on what opinion were taken of its colour and the length of its pubescence, but since *X. brevipennis* is almost always brachypterous, whereas *B. continua* is always macropterous, there would be immediate cause for doubt. *B. continua* is a member of the tribe Dufouriellini (=Cardiastethini). If placed in taxonomic order in the checklist of Kloet & Hincks (1964) *Buchananiella* Reuter, 1884 would come immediately after *Cardiastethus* Fieber, 1860.

**Fig. 1.** a. *B. continua* female, dorsal view: scale bar = 1 mm. b. male antenna. c. female antenna. d. pronotum, dorsal view. e. tip of male abdomen, genital capsule pulled slightly back, dorsal view.
B. continua appears to live amongst accumulations of dry vegetation. Péricart records it amongst dry cut hay, where it was probably preying on Psocoptera. In Buckingham Palace Garden, B. continua was found in an area used for composting. All individuals captured were amongst stacked dry branches, still with leaves attached, though dry and brittle. The resultant vegetation formed a sizeable protected and sheltered volume, but with quite large internal spaces. Though this cut and stacked material probably represented the breeding site, there can be no guarantee that this was the case. Only adults were captured, and it is possible that the nymphs developed elsewhere, perhaps at a greater depth within the piled vegetation, and that only adults were active amongst the more accessible branches. However, no adults or possible nymphs of B. continua could be found in material of any other sort within the composting area, despite specific search by beating and sieving.

The bugs were readily beaten from the dry branches onto a plastic tray. Their behaviour, once on the tray, was quite different to that of any other British anthocorid I have encountered. They were very active, moving in a series of very short flights of a few centimetres, often with brief rests or short walks between. Such behaviour may well be an efficient method of escape from danger in the loosely packed dry vegetation where they lived, but is decidedly ineffectual on a plastic tray. In my experience, other anthocorids of similar size and shape usually either run to shelter, or, if they choose to fly, do so with more determination and are quickly lost. This behaviour may not, however, be an infallible method of recognition for B. continua: the captures were made on a warm day in August; the insects might well be less active and more inclined to run than fly in colder weather.

The long-term viability of B. continua as an established British species must be open to some doubt. It does not appear to be able to diapause in the winter (Péricart, 1972), which could pose problems in the British climate. The mid 1990s have been notable for a succession of mild winters. A single severe winter might pose a problem for B. continua. However, its adoption of artificial habitats may facilitate its finding conditions sheltered from extremes of climate, and the relatively warm climate provided by the urban complex of London is likely to provide outdoor conditions as suitable as can be found anywhere in Britain. B. continua could be considerably more widespread, at least in London and the south-east. Habitats similar to that in which it was found in Buckingham Palace Garden are by no means scarce in urban and suburban areas, and in the wider countryside, though suitable conditions may often be of short duration. Moreover, such habitats in urban areas are likely to receive rather little attention from heteropterists.

ACKNOWLEDGEMENTS

This publication results from a survey of the natural history of Buckingham Palace Garden being undertaken by the London Natural History Society in order to record the entire flora and fauna there. This work is being carried out by gracious permission of Her Majesty The Queen.

REFERENCES

Handbooks for the identification of British Insects II(1).


SHORT COMMUNICATIONS

Humming-bird hawk-moth *Macroglossum stellatarum* (L.) (Lep.: Sphingidae) probing the ground—A humming-bird hawk-moth was seen hovering and probing the ground at Micheldenever Wood, Hampshire, along the path between grid reference SU533366 and SU531386 at ~15.30 h BST on 22.viii.1996. The ground here comprised a mixture of compacted earth and, predominantly, stony gravel, with sparse ground-lying vegetation. The moth was tracked and observed for several minutes during which it would hover and probe the ground, fly for short bursts without deviating to seek nectar, and resume probing 3–10 m further NNW. Intermittently, however, hovering was followed by periods of settling on the spot for several seconds with wings in resting posture. These periods were always followed by a short burst of flight before hovering and probing resumed. Attempts to approach the insect, whether hovering or settled, elicited similar flights. During one period of settling the moth was netted with the aim of determining its sex, but forced its way out through a hole and flew 10–12 m along the path in an erratic course before resuming its prior behaviour. A second capture attempt revealed it to be male.

*M. stellatarum* is a mainly diurnal nectar feeder that has been recorded at many wild and cultivated plants (Skinner, 1984; Herrera, 1992; Pitt-Payne, 1996). Yet despite searching several works on moth biogeography and behaviour (Ford, 1955; South, 1977; Heath & Emmet, 1979; Skinner, 1984; D’Abrera, 1986; Pittaway, 1993) the author could find no mention of *M. stellatarum*, or other Palaearctic Sphingidae, feeding at the ground; although some tropical species will drink eye secretions and some North American hawk-moths will probe rotting animal remains (Pittaway, 1993).

Ground feeding is better known in butterflies which use it to obtain moisture and salts, notably sodium chloride (Adler & Pearson, 1982). Sodium is needed for proper muscle function, and for egg production (Porter, 1992) where its precise physiological role is poorly understood (House, 1974; Happ, 1984). However, as most of the sodium for egg production is obtained during copulation from the males, the reserves are more seriously depleted and in need of replenishment in this sex (Porter, 1992). Rainwater collecting in puddles elutes salts from the ground, which become concentrated as the water evaporates, and it is such damp patches that are most attractive (Sevastopulo, 1974).

Middle Wallop, the nearest meteorological station, recorded 0.6 mm of rain on 20.viii.1996, a trace on 21.viii, and prior to this 0.2 mm on 17.viii. The ground at Micheldenever Wood was not visibly damp when the moth was probing, but comparable rainfall there may have been sufficient to dissolve surface salts. Sodium chloride is hygroscopic, and should *M. stellatarum* be able to secrete water from its proboscis to cope with viscous nectars (see Kevan & Baker, 1983), as its wide range of nectar sources might suggest, then hygroscopically bound water could lessen the amount of fluid the moth must secrete.

In day-flying moths, scent may be relatively unimportant for locating nectar (Kevan & Baker, 1983), and an instance of *M. stellatarum* trying to feed from coloured lights (Bigger, 1960) demonstrates that visual cues can suffice. However, the stimulus for ground-probing, and the means by which moisture and salts are detected, remain to be established. Low-level flying and probing for moisture may exemplify a generalized response to increased humidity or decreased barometric pressure, and the habit of male honeydew-feeding purple hairstreak butterflies *Quercusia quercus* L. (Lycaenidae) to forage lower than usual in the canopy during sultry weather is well known (Ford, 1957). Many butterflies can “taste” salt with
their feet (Adler & Pearson, 1982) and comparable sense organs in *M. stellatarum* would enable the moth to detect surface salt when settling. The observation that a proximity of salt solution will elicit flexing motions of the antennae in purple emperor butterflies *Apatura iris* L. (Martin C. White, *pers. comm.*), on the other hand, suggests that some species may be able to detect short-range gradients in the concentration of airborne salt molecules.—**Leonard Winokur**, 8 Parklands Close, Chandlers Ford, Eastleigh, Hants SO53 2EQ.

**REFERENCES**


---

**A new locality for *Cosmotettix caudatus* (Flor) (Hemiptera: Cicadellidae), with a note on its ecology**—The known distribution of *C. caudatus* in Britain is very scattered, with single localities previously reported in Buckinghamshire, Lancashire, Northamptonshire, Oxfordshire and Somerset (Kirby, 1992). The ecology of the insect is poorly known. Previous British records are from wet areas and water margins. Le Quesne (1969) reports it from “grasses in damp places”. Ossiannilsson (1983) gives *Carex vesicaria* L. as a foodplant, and its habitat as “tall sedge-bogs”.

In 1990 I found *C. caudatus* at a second Northamptonshire locality, Racecourse Farm Fields SSSI, National Grid Reference TF018042. My first visit to this site was made on 10.vi.1990, close to dusk on a cold evening. Examination of a large (approximately two metres across) patch of *Carex hirta* L. revealed a considerable number of *Cicadula persimilis* (Edwards), many of them quite high in the vegetation and easily caught by sweeping. There were smaller numbers of a similarly sized but paler insect without obvious markings on the head. These occurred only low down in
the sedge clump. None were taken by sweeping and, because of the dense vegetation, they were elusive, even at the low temperature at the time of observation. My initial reaction was to dismiss them as tender \textit{Cicadula}, hypothesizing that their tendency to keep low in the vegetation might be an adaptation to keep them relatively safe from predation when their defences were weak and, perhaps, their jumping ability limited. I captured two individuals for checking, which proved on my return home to be a male and female \textit{C. caudatus}.

My next visit to the site was on 20.viii.1990, when I hoped to establish more clearly the distribution of the insect and to capture nymphs. Though the weather was better than on the June visit and I now had an established search-image for the insect, \textit{C. caudatus} seemed significantly less numerous than on the first occasion, and I was unable to find associated nymphs. Once again, the insects were concentrated low down in the vegetation. A third visit to the site on 12 September produced no \textit{C. caudatus} despite careful search of its known area of distribution.

Two points which emerge from these observations are worthy of note. First, Racecourse Farm Fields is not a wetland, but an oolitic limestone grassland. Second, \textit{C. caudatus} was found only on \textit{Carex hirta} (of which only this one patch was found on the site). There was a large patch of \textit{Carex flacca} Schreber adjacent to the \textit{C. hirta} and contiguous with it for a length of about a metre. \textit{Cicadula persimilis} occurred freely and seemingly indifferentily in both sedge species, but no \textit{C. caudatus} were found on this or on other patches of \textit{C. flacca} in the vicinity, nor on three other \textit{Carex} species present at the site: \textit{C. ericetorum} Pollich, \textit{C. spicata} Hudson and \textit{C. caryophyllea} Latourr. all of which grew as scattered plants throughout the grassland.

It seems clear that \textit{Carex hirta} is a foodplant of \textit{C. caudatus}, and rather likely that, at Racecourse Farm Fields, it is the occurrence of the host plant rather than the habitat as such which is the limiting factor in determining the distribution of the insect. There is no reason to suppose that \textit{C. hirta} is the only foodplant, but it does seem that the insect does not occur on all sedges. It is possible, also, that it requires its foodplants to occur in large dense clumps. If the habits of the insect at this site, in remaining very low in the vegetation, are typical, then it could easily be overlooked, especially if amongst similarly sized \textit{Cicadula} species. This could go some way towards explaining the widely scattered records of the species.

The phenology of the insect observed in 1990 may be atypical. The very hot summer of that year profoundly affected limestone grasslands in the Peterborough area. By early July signs of drought were already apparent, and by September much of the vegetation was brown and dry, and finding insects of any sort was difficult.

My visits to Racecourse Farm Fields were made as part of a survey of oolitic limestone grasslands undertaken for the East Midlands Region of the Nature Conservancy Council (now English Nature). Thanks go to Burleigh Estates for giving permission for the survey, and to Sarah Lambert for identifying the sedges.—P. KIRBY. 21 Grafton Avenue, Netherton, Peterborough PE3 9PD.

\textbf{References}


Mordellistena secretA Horak (Coleoptera: Mordellidae), a Species New to Britain

B. Levey

Department of Biodiversity & Systematic Biology, National Museums & Galleries of Wales, Cardiff CF10 3NP, UK.

Abstract. Mordellistena secretA Horak is recorded from Britain for the first time. Notes are given to distinguish it from other species with which it is likely to be confused.

INTRODUCTION

Batten (1986) in his review of British Mordellidae includes Mordellistena pentas Mulsant in his key as a species which might eventually be found in Britain. Amongst some Coleoptera collected by me on Epsom Common, Surrey, on 23.vi.1971 were two Mordellistena which I had not identified until recently. One of these was a female M. puinila (Gyllenhal) and the other a male, keyed out to M. pentas Mulsant using Batten (1986).

However, using Horak’s (1983) key to the pentas species group, this specimen keyed out to M. secretA Horak, a species described from Slovakia and the Czech Republic, and also recorded from Austria, Rumania, Bulgaria, Greece, Macedonia, Turkey, the Caucasus and Armenia, but not apparently from western Europe. I sent the specimen to Jan Horak who kindly confirmed my identification.

I was subsequently sent another male of the pentas species group by Daniel Hackett, collected on Hounslow Heath, London, on 3.vii.1998. The genitalia of this specimen did not match well with that of my specimen of M. secretA; the length to width of antennal segments 5–10 was between 1.1 and 1.3 times instead of 1.4–1.6 times as long as wide, as given for secretA, and the shape of the last segment of the maxillary palp was somewhat different. These characters appeared to correspond more closely with the figures and description given by Horak for M. berbera Horak, described from Algeria. I sent the specimen to Jan Horak who identified it as a specimen of M. secretA. It thus appears that M. secretA shows some variation in those characters used to identify the species in this group, rendering identification problematic in this difficult group. I have figured the antennae, maxillary palpi and male genitalia of the two specimens for comparison (Figs 1, 2, 4–8, 11, 12).

IDENTIFICATION

In Batten (1986) M. secretA will key to M. pentas. M. secretA can be distinguished from M. pentas in that the males of the former species have a brush of longer protruding hairs near the base of the fore tibia on the inner part of the anterior face, which is absent in M. pentas (Figs 9–10). In the few specimens I have examined the elytra of the latter species is also less curved when viewed from the side. Needless to say it may not be possible to identify females unequivocally in this group.

I have figured the parameres of a specimen of M. pentas from Konitsa, Ioanina, Greece from my collection, that was identified by Jan Horak, in case this species should be found in Britain (Fig. 3). The figure of the parameres given in Batten (1986) which is the same as that given in Batten (1976) from a specimen from Vernet, France, and the figure in Ermisch (1969) do not agree well with the specimen I have
figured. This could be due to individual or geographic variation, or possibly the specimens figured are another species.

The pentas group can be distinguished from the punila group in that members of the former group have three ridges on hind tarsal segment two, whereas the latter group have only two ridges on this segment. This character can be difficult to see unless the specimens are well set. *M. secreta* in general appearance is very like the rather variable *M. punila* (Gyllenhal) and the shape of the parameres, phallobase and the apical part of the penis are also very similar, so it is possible that *M. secreta* may well turn up amongst material standing as *M. punila* in collections.

**ACKNOWLEDGEMENTS**

I wish to thank Jan Horak for confirming and correcting the identification of specimens mentioned in this paper, and Daniel Hackett for allowing me to see his specimen.

**REFERENCES**


**SHORT COMMUNICATIONS**

*Nysius senecionis* (Schilling) (Hemiptera: Lygaeidae) feeding in large numbers on Guernsey fleabane—On 22.ix.1998, whilst visiting a derelict site in Wandsworth, West London (VC17, ‘Surrey’), I was startled by the abundance of Guernsey fleabane, *Conyza sumatrensis* (Retz.) E. Walker (Asteraceae). The site, on the River Thames at the outlet of the River Wandle (TQ253752), had previously been a storage facility for Shell, and the large circular concrete bases of the storage tanks were still present amongst the acres of rubble. The fleabane was growing out from almost every available crack and piece of bare ground. Thinking it might be a novel foodplant for some insect or other I swept a small patch and was rewarded by a sweep net crawling with about 200 specimens of a ground-bug, a *Nysius* species—both adults and nymphs. Beating other patches of the plant over the net confirmed that the insect was incredibly abundant. The *Nysius* was easily determined later as *N. senecionis*, using the description and figures given by Hodge & Porter (1997).

As its name suggests, *Nysius senecionis* is well known to feed on ragworts, *Senecio* species, and since the insect’s discovery in Britain in 1992, it has been fairly widely recorded in south-east England on these common plants (Hodge, 1997; Kirby, 1997).

Guernsey fleabane is not unrelated to ragworts, but its use as a foodplant for the bug is a little surprising. What is even more surprising, however, is the amazing abundance of the bug on the fleabane at this site. It was not possible, in the limited circumstances of the visit, to make anything other than a rough guess of the bugs’ numbers, but a few sweeps of the net produced easily over 100 specimens from a small patch of the foodplant. Several hundreds of thousands must be a conservative estimate of the insect’s numbers at this site.
Having found this 'new' bug so commonly at Wandsworth, I thought to check other *Nysius* specimens I had collected recently. Three of them turned out to be *N. senecionis*: Wandle Mouth, TQ256752, VC17, 18.vi.1998 (just the other side of the River Wandle from the Shell site); Deptford Creek, TQ379779, VC16, 23.ix.1997 (also on the River Thames, but on the other side of London); Woodlands Farm (Shooters Hill), TQ450765, VC16, 18.vi.1998 (about 2 miles from the Thames at Woolwich). Unfortunately, these specimens had been taken by general sweeping, and there was no clear connection to any particular foodplant at any of the localities. Ragworts occurred at every site, but so too did the Guernsey fleabane.

Despite its English and scientific names, Guernsey fleabane is a native of South America; it was first introduced into the Channel Islands (Stace, 1991), and then into the London area (Burton, 1995). Since its arrival in the capital in 1983, it has become very common and widespread, increasing more rapidly than any plant species at least since Oxford ragwort in the 1930s and 1940s (Burton, 1995). It is now reckoned to occur in over 25% of the 400 or so tetrads which cover the urbanized area of greater London (N. Bertrand, personal communication).

Guernsey fleabane is a large and obvious plant, but because of the insignificant flowers (capitula), it is easily overlooked. Since it was first pointed out to me at the Shell site, I now see it wherever I go in London. It is rather similar to Canadian fleabane, *Conyza canadensis* (L.) Cronq., but is often taller, to 1.5 metres, with a more conical inflorescence (Figure 1), and with the phyllaries (green sepal-like structures around each capitulum) quite pubescent.

Since finding *Nysius senecionis* on Guernsey fleabane, I have been examining the plant whenever I come across it, so far without further success. However, given the plant's rapid spread across (and out of) London, and the bug's huge numbers on the banks of the Thames corridor, it seems quite probable that this South American plant will be worth examining by all entomologists wherever they find it. A photograph of the plant is included here to stimulate this search.

My thanks to Valerie Selby of Wandsworth Borough Council's Nature Study Centre for negotiating access to the Wandsworth Shell site, and to botanist Nick Bertrand for his comments on Guernsey fleabane and for pointing it out to me 'in the field'.—Richard A. Jones, 135 Friern Road, East Dulwich, London SE22 0AZ.

**References**

Oedalea ringdahli Chvála (Diptera: Hybotidae) in northern England.—On 10.vii.95 at Forge Valley Woods Nature Reserve, near Scarborough (SE984874), I collected a female Oedalea which I was subsequently unable to identify. The specimen was swept in damp shady deciduous woodland close to the River Derwent, which at that point is little more than a shallow stream.

Attempts to name the specimen using the keys in Collin (1961) and Chvála (1983) failed at the first couplet because the antennal style is neither ‘bristle-like’ (or ‘slender’) nor ‘stout’, but somewhere between the two extremes. As the legs are predominantly dark brown I put the specimen on one side for further study and noted that it was probably ‘close to ringdahli’. The Fourth International Congress of Dipterology, which was held at Oxford in September 1998, provided an opportunity for me to ask Dr Milan Chvála to look at the specimen, which he kindly did, and he suggested that it was probably ringdahli. I later submitted it to Dr Adrian Plant who had described the female of this species from specimens collected at Cwm Sere in the Brecon Beacons (Plant, 1991), and he has confirmed that it is, indeed, Oedalea ringdahli. As far as can be ascertained, this record constitutes the first for northern England.

O. ringdahli was first described in 1983 from a single male from Sweden (Chvála, op. cit.) A single male was found in northern Scotland in 1984 (McLean, 1991), and a further single male in the Black Wood of Rannoch (MacGowan, 1991). Subsequently both males and females were found at Cwm Sere (Plant, i.e.).

Two dark-legged male specimens of what were originally taken to be Oedalea hohugreni Zett., were noted by Collin (op. cit.). One of these, leg. J. H. Wood at Cusop Dingle, Herefordshire, 16.vi.1914, and now in the collection of the Natural History Museum, has proved to be O. ringdahli (McLean, i.e.). The second, which might also be of this species, leg. B. R. Laurence at Harpenden, Hertfordshire 22.vi.1950, cannot be located at present (MacGowan, i.e.).

I am obliged to Dr Chvála for his advice, and to Dr Plant for kindly identifying my specimen and for helpful comments.—ROY CROSSLEY, 1 The Cloisters, Wilberfoss, York YO41 5RF.

REFERENCES


A RECORD OF *ECTEMNIUS RUFICORNIS* (ZETT.) (HYMENOPTERA: SPHECIDAE) AND ITS ANTHOMYIID CLEPTOPARASITE (DIPTERA) BREEDING IN SOUTHERN SCOTLAND

K. P. BLAND

National Museums of Scotland, Chambers Street, Edinburgh EH1 1JF

While investigating a four-foot-high rotten birch stump at Threepwood Moss, Roxburghshire (NT5142; VC.80) on 2.v.1998, a series of galleries were discovered that turned out to be the nest complex of the solitary wasp, *Ectemnius ruficornis* (Zett.). The approximate arrangement of the 3-dimensional nest is shown in Fig. 1a. Several galleries were left undisturbed but in most of those investigated the terminal ends of each gallery contained the head capsule and much of the exoskeleton of 2 or 3 largish flies that had served as the larval food. Next to these was the wasp’s cocoon, after which the gallery had been sealed with a substantial amount of tightly-packed sawdust (Fig. 1b).

The 5 aculeate cocoons collected produced two different species of wasp. Firstly on 28.v.1998 the all-black ♀ of a *Crosocerus megacephalus* (Rossius) (Sphecidae)

---

Figure 1a. Diagram showing the lay-out of the galleries made by *Ectemnius ruficornis* in dead birch stump. Scale-bar = 6 cm.

Figure 1b. Enlargement of the terminal end of one of the galleries showing the aculeate cocoon (a) with insect prey remains (b) packed into the terminal end and the proximal end sealed with a plug of sawdust (c).
emerged from the smallest cocoon. This presumably was the result of a female *C. megacephalus* finding a ready-made gallery and opportunistically taking it over as a brood chamber. Secondy, 2♂♂ and 2♀♀ *Ectemnius ruficornis* (Zett.), the rightful inhabitants of the nest, emerged between 1–28.vi.1998. The caches of food provided by *E. ruficornis* for its larvae had consisted entirely of hoverflies (Diptera; Syrphidae). The identifiable species present and their numbers were:

\[
\begin{align*}
\text{Rhingia campestris Meigen} & \quad 7♂♂ \\
\text{Meliscaeva cinctella (Zett.)} & \quad 1♂ \\
\text{Chrysotoxum bicinctum (L.)} & \quad 1♀ \\
\text{Platycheirus (Pyrophaena) granditarsus (Forster)} & \quad 1♀
\end{align*}
\]

The end of the gallery containing the smallest cocoon that produced the *C. megacephalus* was not noticeably different in its provisioning to the others. This may be a coincidence or it may indicate that it was provisioned by *E. ruficornis* before being taken over by *C. megacephalus*!

*Ectemnius ruficornis* does not appear to have been previously recorded from Scotland. However, as the present account indicates, the species is present and breeding at least in the Scottish Borders. Previous British records of the species are from south of a line from Grange-over-Sands to Scarborough (Edwards, 1998) or from north-east Ireland (Richards, 1980).

The ends of two galleries were almost devoid of larval food remains but were still sealed with a sawdust plug. In place of the aculeate cocoon there was a single long cylindrical dipteran puparium. These puparia were a shiny dark reddish brown and some 9 mm long. Detail of the posterior spiracular region is shown in Fig. 2. Between

![Figure 2. Details of the posterior end of the puparium of *Eustalomyia festiva*. Scale-bar = 1 mm.](image)
19–23 vi.1998 these puparia produced \(25\) \(\frac{3}{4}\) Eustalomyia festiva (Zett.) (Diptera: Anthomyiidae), a known cleptoparasite of solitary wasps. In spite of its large size, \(E.\ festiva\) only appears to have been reported once before from Scotland, namely when taken by J. M. Nelson at Methven Wood, Perthshire (VC.88) in 1980 (Nelson, 1984).

ACKNOWLEDGEMENTS

I am very grateful to Michael E. Archer of University College of Ripon & York for identifying all the specimens of solitary wasps, to Andrew Whittington of National Museums of Scotland, Edinburgh, for advice and assistance with syrphid identification and to Stephen Mitchell of Royal (Dick) School of Veterinary Studies, Edinburgh for the scanning electron microscope picture.

REFERENCES


SHORT COMMUNICATIONS

Ptomaphagus varicornis (Rosenhauer) (Col: Leiodidae) in North Devon.—According to Hyman (1994), \(Ptomaphagus\ varicornis\) (Rosenhauer) has been recorded from the Isle of Wight, East Kent, Surrey, Berkshire, Oxfordshire, Staffordshire, Nottinghamshire and Derbyshire prior to 1970, but since then from Surrey alone. On June 6, 1998, I found a single specimen by the quarter wall on Lundy Island, North Devon. A large piece of matted sheep's wool on a narrow track through heather and bilberry was found to contain this and a number of other beetles including Quedius tristis (Gravenhorst), Aphodius fimetarius (L.) and Tachyporus pusillus Gravenhorst. According to Brendell (1976), who reviewed all the known records of Coleoptera from Lundy, a number of other leiodid beetles have been recorded from the island, and these include \(Ptomaphagus\ subvillosus\) (Goeze) var. sericatus Chaudoir taken by Norman Joy in 1906. The present specimen of \(P.\ varicornis\) is a new record for Lundy. I have been unable to discover any previously published records for Devon, but further research revealed a single specimen of \(P.\ varicornis\) in the K. G. Blair Collection at the Hampshire County Museum, Winchester. The data label shows that Blair collected it at Braunton, North Devon, although there is no date attached. A number of other beetles in the collection carry similar labels, some of which are clearly marked 1928. As there are no specimens from Braunton marked with any other date it seems quite likely that Blair took his specimen in that year. The present finding is of considerable interest as Braunton is almost the nearest point on the Devon mainland to Lundy, a distance of just 15 miles. From this observation it would appear that \(P.\ varicornis\) has definite Devonian status although its presence, at presumably low density, has threatened to escape notice up to the present time. J. F. Campbell-Taylor, who contributed the section on Coleoptera to Palmer's (1946) Fauna and Flora of the Ilfracombe District, North
Devon, wrote that his list was “based on, and in fact consists of, an article written by K. G. Blair...under the heading of Braunton...”. Although he also included *P. subvillosus* from Lundy, he did not mention *P. varicornis* from Braunton, a curious omission. Hyman (1994) states that “in south-eastern England, this species has been recorded from chalky districts. It is usually found in leaf-litter and moss. Adults have been recorded in April and May.” This is interesting as Lundy is essentially a granite island and the area around Braunton is of Devon sandstone. I am grateful to Christopher Palmer, Keeper of Biology, for permission to examine the K. G. Blair Collection at Winchester.—Dr Michael A. Salmon, Avon Lodge, Woodgreen, New Forest, Hampshire, SP6 2AU.

**REFERENCES**


---

**Notes on the habitats of Hebrus ruficeps** (Thomson) (Hemiptera: Hebridae)— *Hebrus ruficeps* is usually found amongst *Sphagnum* at the margins of acid water. So close and so frequent is this association that it sometimes seems to be exclusive. Brown (1948) for example, states that “*Sphagnum* appears to be an essential complement to a habitat for *Hebrus ruficeps*”. Southwood and Leston (1959) refer to the bug occurring in “Amblystegia” as well as *Sphagnum*, but consider that it is confined to the margins of acid waters. Macan (1965) places it “usually in wet *Sphagnum*” without specifying the alternatives. Butler (1932), while reporting *H. ruficeps* from *Sphagnum*, suggests that Kirkaldy had found the insect in association with *Lemma*, which would suggest a quite different type of water body. In fact, it is doubtful that Kirkaldy really intended to make this association. His writing on the subject (Kirkaldy, 1899) is ambiguous, and could refer to either of the British species of the genus. Savage (1989) makes no mention of the association with *Sphagnum*, but the entries for *H. ruficeps* in the table of geographical and ecological distribution suggest that it is confined to waters with a pH less than six and a conductivity less than 100 micro-Sieverts per centimetre. Some authors at least in mainland Europe seem to allow *H. ruficeps* a broader ecological range than has been usual amongst British authors. For example, Stichel (1955) says that it occurs amongst *Polytrichum*, and also that it can occur away from moss, amongst plant remains at water margins. Wachmann (1989), in a recent popular guide to the German Heteroptera, makes no distinction between the habitats of *H. ruficeps* and *H. pusillus* (Fallén), whereas in
Britain the latter, though rarer, has long seemed much more catholic in its environmental tastes. Chalkley (1998) comments on the variation in opinion as to the habitat preferences of H. ruficeps, and points to the finding of the species amongst brown mosses beside non-acid waters in Northern Ireland reported by Nelson (1995).

In fact, H. ruficeps occurs reasonably frequently in at least some parts of Britain beside non-acid waters, and in the absence not only of Sphagnum, but sometimes of any moss at all. I have previously reported (Kirby, 1990) the finding of H. ruficeps in a saltmarsh. It seems worthwhile now to report a number of other recent records of H. ruficeps which, though less extreme, place the species outside the ecological conditions with which it is most commonly associated in Britain.

I took a single specimen of H. ruficeps on 19. iv.1991 from marginal vegetation at Holywell Fishponds, Peterborough, Northamptonshire. TL169980, a series of spring-fed medieval fishponds severely modified over the years and now set in improved grassland in a public open space. The margins of the pools are abrupt and almost devoid of moss. Measurements in one of the ponds on the site by the National Rivers Authority in 1990 gave a pH of 7.7 and a conductivity of 1295 micro-Sieverts per centimetre (G. E. Young pers. comm.). H. ruficeps was found by working partially submerged grasses growing on a slightly overhanging bank. Accidental introduction cannot be entirely ruled out at this site; animals and plants have certainly been introduced to the site. The possibility seems remote, however, if only because the garden ponds and fish tanks of Peterborough seem less likely to have suitable conditions for H. ruficeps than the pond in which it was found.

On 17.v.1992 I found a single H. ruficeps amongst drifted plant material taken from the edge of a large shallow pool in Dogsthorpe Star Brickpit, Northamptonshire, TF215027, a disused clay working. At the point from which the sample was taken the drifted material, mostly fragments and whole small plants of Juncus articulatus L., formed a band some 30 centimetres wide and several centimetres deep along a gently shelving margin of almost bare clay. H. ruficeps could, of course, have drifted with the plant material from elsewhere around the margin of the pool. No part of the pool margin, however, supported any significant amount of moss of any species. The conductivity of the pool on 3.v.1992 was measured as 2200 micro-Sieverts per centimetre at 25°C (J. H. Bratton pers. comm.), the high conductivity resulting from seepage from a saline aquifer in the Kellaways Beds. I have found H. ruficeps at one other flooded clay pit in the Peterborough area: Norman Cross Pit, Huntingdonshire, TL162908, 16.viii.1997, again in the complete absence of moss. I have no records of conductivity or pH for the Norman Cross Pit, but it is certainly not acidic or of low conductivity.

I have found H. ruficeps at two other, definitely non-acid, localities in the Peterborough area in recent years: it was rather common at Stibbington Pits, Huntingdonshire, TL098993, on 30.vi.1993, amongst reed litter and marginal vegetation in a disused gravel working beside the River Nene. At Sutton Heath & Bog SSSI, Northamptonshire, TF089000, H. ruficeps emerged in small numbers from sedge litter taken from a large sedge bed in a limestone valley on 28. iv.1996.


It is far from clear what environmental constraints determine the occurrence of *H. ruficeps*. The records above clearly show that they do not include water pH or the presence of *Sphagnum* or other mosses. Nor is it apparently unduly restricted by poor mobility, as might be considered likely for an habitually wingless species: the clay and gravel workings in which it has been recorded near Peterborough are of recent origin. Its scarcer congener *H. pusillus*, despite being winged, seems far more tightly confined to old wetland sites. However, even allowing for the fact that it is small and easily overlooked, *H. ruficeps* is clearly decidedly local in non-acid localities. Moreover, it appears to be similarly local in acid waters with *Sphagnum*: it may occur in large numbers when found, but the majority of sites investigated in most areas, in my experience apparently do not support the species.

Thanks go to Andrew Foster and Deborah Proctor for their records of *H. ruficeps*, and to Andrew Foster also for extracting the information from their database and for permitting me to use his record of *H. ruficeps* from Sizewell.—P. KIRBY, 21 Grafton Avenue, Netherton, Peterborough PE3 9PD.

**REFERENCES**


---

**The specialist Hemiptera associated with mistletoe**—Concerns about a supposed decline in mistletoe (*Viscum album*) led to a new national survey over the winters of 1995/6 and 1996/7 (Briggs, 1995; 1997). As an adjunct to this survey it was decided to look for the insects specifically associated with mistletoe.

Mistletoe is host to three specialist herbivores: *Psylla visci* Curtis (Hem.: Psyllidae), *Orthops visicola* (Puton) (Hem.: Miridae) and *Celypha woodiana* Barrett (Lep.: Tortricidae, Olethreutinae). The predatory species *Anthocoris visci* Douglas (Hem.: Cimicidae) is also restricted to mistletoe, apparently feeding exclusively on
*Psylla visci.* *A. visci* was classified as a nationally notable species by Kirby (1992). This work concentrated on the Hemiptera, for which there are very few recent records (Bernard Nau, 1996 *pers. comm.*), because they seem to have similar life cycles, and can all be sampled in the same way.

Mistletoe was sampled on 31.viii./1.ix.1996 at three locations where access to mistletoe was relatively simple, using a beating tray and a sweepnet. Estimates of the abundance of the species were recorded, and shown in Table 1.

Table 1. The abundance of the specialist Hemiptera. Present < 5, Occasional 5–50, Frequent > 50

<table>
<thead>
<tr>
<th>Location</th>
<th>Painswick Gloucester</th>
<th>Kemerton Worcester</th>
<th>The Ladin Hereford</th>
</tr>
</thead>
<tbody>
<tr>
<td>National grid ref.</td>
<td>SO 8609</td>
<td>SO 9436</td>
<td>SO 6635</td>
</tr>
<tr>
<td>Habitat</td>
<td>Garden</td>
<td>Orchard</td>
<td>Orchard</td>
</tr>
<tr>
<td>Host</td>
<td>apple</td>
<td>apple, balsam poplar</td>
<td>apple</td>
</tr>
<tr>
<td>mistletoe abundance</td>
<td>1 tree</td>
<td>&gt; 25 trees</td>
<td>&gt; 35 trees</td>
</tr>
<tr>
<td><em>Psylla visci</em></td>
<td>Present</td>
<td>Frequent</td>
<td>Frequent</td>
</tr>
<tr>
<td><em>Orthops visicola</em></td>
<td>Occasional</td>
<td>Frequent</td>
<td>Frequent</td>
</tr>
<tr>
<td><em>Anthocoris visci</em></td>
<td>Absent</td>
<td>Present</td>
<td>Present</td>
</tr>
</tbody>
</table>

As expected the predatory species was the least abundant, and not recorded from the smallest sample site. It is not clear if this absence was because the populations of prey species were too small to allow *A. visci* to persist, or a reflection of the chances of dispersal to a small habitat patch.

Most of the previous records for the mistletoe insects are from apple so it may be worth noting that all three Hemiptera were recorded from mistletoe growing on balsam poplar at Kemerton. Since there are also recent records from poplar and field maple (Nau, 1985), it seems likely that the preponderance of apple records reflected the accessibility of orchard mistletoe to entomologists (though see Le Quesne, 1954). The problem of access to mistletoe is also the most likely reason for the paucity of recent records.

This very limited survey showed that the insects associated with mistletoe are relatively easy to find, albeit where mistletoe is most common and abundant. The other recent records from Bedfordshire (Nau, 1985) and Warwickshire (Price, 1987), where mistletoe is much less widespread, may indicate that similar attention in other areas would produce more records.

We are grateful to the landowners who allowed us to sample mistletoe, and Jackie Denman of ‘The Big Apple’ who helped to arrange this. Thanks are due to Bernard Nau for his help over the recent records.—JOHN HOLLIER, 42 Rue Virginio Melnati, 1217 Meyrin, Switzerland, JONATHAN BRIGGS, 2 Ledgemoor, Watledge, Nailsworth, Gloucester GL6 0AU.

REFERENCES


---

**Notes on the occurrence of the planthoppers Reptalus panzeri (Löw) (Hemiptera: Cixiidae) and Asiraca clavicornis (Fab.) (Hemiptera: Delphacidae)—**The characteristic planthoppers *Reptalus panzeri* (Löw) (= *Oliarius panzeri*) and *Asiraca clavicornis* (Fab.) are considered by many hemipterists to be very uncommon. In the national review by Kirby (1992), both are listed as being nationally scarce (notable B). Each is reported to be associated with rough grassland, especially dry open areas or where patches of bare soil are present. Both entries in the review are based upon very limited lists of recent records. However, local survey work has shown that both species are widespread and sometimes very abundant in south London. *Reptalus panzeri* also occurs periodically but widely elsewhere in south-east England. The following records have been made in the last few years.

**Reptalus panzeri**

Beckenham Place Park, TQ385706, VC16, West Kent, 27.vii.1995, one by sweeping rough grass at the edge of a small wooded area and next to a sports field. The rough verge-like strip along the edge of the wood was a south-east-facing bank with varied grass and herb species. The park comprises a mixture of ancient woodland, old hedgerows and modern utilitarian recreational playing fields. RAJ.

Dulwich Park, TQ339736, VC17 Surrey, 8.vii.1996, one photographed sitting on a rhododendron leaf in an ornamental garden. This is a most unlikely locality; the rhododendron bushes make up part of an extensive series of ornamental beds surrounded by closely mown grass. There is, however, something special about the site since it supports large colonies of the now scarce rhododendron lacebug *Stephanitis rhododendri* (Horvath), and the elusive rhododendron leafhopper *Placotettix taeniatifrons* (Kirsch.). RAJ.

Crystal Palace, TQ339709, VC17, Surrey, 24 & 25.vii.1996, 5.viii.1996, very many found by sweeping the rough grass and herbage on the derelict top and south-east-facing slopes where the Crystal Palace building itself had once stood. On 25.vii.1996, several hundred specimens were seen and it was the commonest insect at this typically ruderal site. RAJ.


Rocks Farm, Westfield, near River Brede, TQ8117, VC14, East Sussex, 7.viii.1996, one swept in marshy area, possibly off creeping thistle. PJH.

Par Brook, Billingshurst, TQ081249, VC13, West Sussex, 18.vi.1997, a few swept off streamside vegetation in clayey meadow. PJH.

Windsor Great Park, SU975734, VC22, Berkshire, 24.vi.1997, 19.viii.1998, several swept off grass at edge of woodland in deer park. PJH.

Woodlands Farm (Shooters Hill), near Bexley, TQ449768, VC16, West Kent, 20.vii.1998, 3.viii.1998, many by sweeping in open meadows, once arable, but disused fallow for about 10 years. The fields have apparently been mown once or twice and
although full of long grass and tall herbage, there are still many patches of bare soil. RAJ.


**Asiraca clivicornis**

"The Mudchute", Isle of Dogs, TQ380788, VC21, Middlesex, 25.viii.1984, many hundreds by sweeping and grubbing on dry sunny bank. The plant life on the bank was dominated by a small unidentified spurge species, possibly a garden escape. RAJ.

Nunhead Cemetery, TQ355755, VC17, Surrey, 9.v.1991, 11.iii.1993, 11.v.1993, several by sweeping in rough grassy area behind ruined chapel. A few other specimens observed in subsequent years. RAJ.

Blackheath Hill, TQ383766, VC16, West Kent, 3.x.1995, one swept on rough grass hillside overlooking derelict factory plot and high-rise flats; a very scruffy site. RAJ.

Chinbrook Orchard, TQ415715, VC16, West Kent, 18 & 27.vi.1996, 10.vii.1996, several swept on each occasion from this overgrown allotment plot. RAJ.

Gargoyle Wharf, TQ262754, VC17, Surrey, 10.vi.1996, one swept from this derelict plot, once the site of warehouses and industrial wharfs, and now mainly rubble with rough herbage and buddleia growth. RAJ.

Hither Green "Nature Reserve", TQ402728, VC16, West Kent, 6.vi.1996, several swept from this open rough grassland running beside a railway line. RAJ.

New Cross Railway Cutting, TQ364764, VC16, West Kent, 27.iii.1997, several swept from dry open grassy clearing next to railway line. RAJ.

Both planthoppers used to be more often and more widely recorded (Kirby, 1992), but seem to have retreated from previous outlying localities until they are now more or less confined to the Home Counties. In his review, Kirby (1992) suggests that scrub invasion may be one of the major factors involved with the insects’ decline. Certainly, the ruderal habitats in the London area have plenty of bare soil and are also sites for many other unusual and warmth-loving species more usually associated with dry sandy or heathy areas. The presence of cracks in the ground, or at least bare patches of soil, may be extremely important in the life cycle of *Reptalus*, whose nymphs, like those of other cixiids, are thought to be root feeders. *Asiraca* nymphs like many delphacids may be found close to the ground, although the adults may be found by sweeping. One wonders whether these curious insects are actually more widespread than records indicate, and would be found more readily by grubbing rather than by sweeping.—RICHARD A. JONES, 135 Friern Road, East Dulwich, London SE22 0AZ & PETER J. HODGE, 8 Harvard Road, Ringmer, Lewes, East Sussex BN8 5HJ

**Reference**

BENHS INDOOR MEETINGS

10 November 1998

Mr R.D. HAWKINS showed two species of leaf beetle (Coleoptera: Chrysomelidae) beaten from balsam polar, Populus trichocarpa, at Send, Surrey on 24.ix.98. A specimen of Phylloidescha laticollis Suffrian was found to have a deformed left antenna. The basal segments were misshapen and enlarged. Beyond that point the antenna split into two branches of normal-shaped segments. Also beaten from the poplars were two specimens of Zeugophora subspinosa (Fab.). These were 3.7 mm long and significantly larger than the published size range of 2.5–3 mm. Mr Hawkins also showed an ichneumon wasp, Diphysis quadripunctarius (Müller) taken on 17.v.98 at Highridge Wood, near Brockham, Surrey.

Dr I.F.G. MCLEAN reported finding a male wasp of Vespula germanica (Fab.) in his house at Brampton, Cambs. on 3.xi.98. This is a very late data for this species.

Dr J. MUGGLETON reported that the 1998 Exhibition had been a success with the number of exhibits (157) slightly up on last year. The event was also better attended with 213 members and 68 visitors signing the attendance book (174 and 68 in 1997). Diptera, Coleoptera and Hymenoptera exhibits were well represented but Lepidoptera exhibits seemed to take up less bench space than usual. An excellent Exhibition Dinner was appreciated by about 45 members and guests. Two problems raised were the high cost of parking at Imperial College and the inadequate lighting for looking at small insects. Dr Muggleton said that suggestions for alternative venues would be considered but it was not easy to find such a place. Ideally the hall will be of adequate size with seating and catering facilities for lunch and the Dinner. It also needs to have parking and access by public transport. The University of London’s Senate House and Kempton Park race course were suggested as possible alternatives.

The Exhibition venue has to be booked well in advance and so Imperial College is being booked again for 1999. However, following discussions at the Exhibition, the Society will try and book the Sherfield Hall for a Saturday in late November instead of October. This will avoid clashes with half-term holidays and Halloween parties, and will also give members more time to prepare their exhibits.

Mr N.A. CALLOW showed slides of a wide range of insects and other invertebrate animals taken in Britain and during a visit to Kazakhstan.

Mr R. SOFTLY showed slides of five geometrid and five noctuid moths which have green coloration or have a green connection through their common or Latin names.

8 December 1998

The President, Mr B.C. EVERSHAM announced the death of Mr M. G. Ventom, who had died in January 1996.

Mr S. FALK showed a bee he had collected on 20.viii.96 at the Edge Hill military area in mid-Warwickshire. He had been searching flowers for the local bee Hylaeus signatus (Panzer) when he was surprised to find a North American carpenter bee, Xylocopa virginica. He was even more surprised to find that there was another specimen in the museum at Coventry that had been collected locally by J.W. Saunt earlier in this century.

Mr M. PARSONS showed a pyralid moth new to Britain which had been taken at light at Lydd, Kent between 5–26.viii.1998 and handed to him by Mr S.P. Clancy. It
is *Vitula biviella* (Zeller) and it closely resembles *Ephestia* spp. *Vitula biviella* is associated with conifers on sandy soils and has been spreading in recent years into western Europe from further east.

Dr J. MUGGLETON announced that next year’s Annual Exhibition would be held at the later date of 20th November 1999 in the Sherfield Hall, Imperial College.

Mr S. MILES displayed several conservation publications. These included a JNCC Wildlife and Countryside Link project to review the operation of species protection legislation in Britain. The BENHS had contributed to this review. Also shown were some Butterfly Conservation papers. These were ‘Conservation Strategy 1998–2002’, which outlines action plans for over 40 species of Lepidoptera, and a code of conduct on collecting, breeding and photographing. There is also a DETR paper on SSSI Consultation—better protection and management. The BENHS will be making a response to this paper.

Mr S. FALK reported that Coventry City Council had recently reviewed its unitary development plan. New sites of importance for nature conservation had been designated, including some brown-field sites. Surveys conducted by Mr Falk have shown that some post-industrial sites in Warwickshire are of considerable value to insects and other invertebrates.

Mr R. D. HAWKINS noted an error in O.W. Richards’ R.E.S. key to the Sco1ioidea, Vespoidae and Sphecoidea. The text in the couplet defining male *Vespula vulgaris* (L.) is correct but one figure referred to is inaccurate.

The following persons have been approved by Council as members: Mr Hugh Barton, Dr Roger Booth, Mr Stephen Brady, Dr Peter Costen, Mr Gordon Craine, Mr Adrian Dutton, Mr Patrick Goodwin, Mr Rex Harvey, Miss Anna Juvenon-Lettington, Mr Roger Kiddie, Mr Tony Lee-Magee, Mr Tom Lloyd, Mr Maurice Pledger, Mr Graham Richardson, Mr Peter Taylor, Mr David Warner and Mr D. Willetts.

Mr S. FALK spoke on “Chasing the chestnut sparrow”, an account of two visits made to China in 1993 and again in the spring of 1998. In addition to pictures of the bird life Mr Falk showed many slides of the parks, temples, towns and cities that he had visited.

12 January 1999

The President, Mr B.C. EVERSHAM announced the death of Mr J.E. Maskrey who had died in July 1997.

Mr B.C. EVERSHAM showed a live specimen of the snow flea, *Boreus hyemalis* (L.) (Mecoptera: Boreidae). This was collected at Thetford Warren in the Suffolk Breckland on 10.i.99 by William Seale and the exhibitor. A large population occurs at this site with over 30 being seen in November. The snow flea is relatively inactive during the day, when only a few individuals were seen, but larger numbers appear at dusk and it remains active for three to four hours after dark. Although tolerant of low temperatures and sensitive to overheating, there were more individuals active at 3–5°C than at or close to freezing point. The snow flea feeds on mosses and appears to be associated with *Polytrichum* spp., including *P. commune*, *P. formosum* and *P. juniperinum*.

Mr R.D. HAWKINS showed a specimen of the shield bug *Holcostethus vernalis* (Wollf) (Hemiptera: Pentatomidae). It was one of two specimens swept by P.J. Hodge in woodland clearings south of Boulogne near the coast of northern France on 12.ix.98. This species has been recorded in Britain but is of rare occurrence.
Mr B.S. Nau showed some photographs of the shield bugs *Holcostethus vernalis* (Wolff), *Dolycoris baccarum* (L.) and the winter form of *Palomena prasina* (L). The last two are common species with which *H. vernalis* might be confused. Mr Nau also displayed some distribution maps for shield bugs in Bedfordshire. This county has been well worked for this group of insects. Some species have shown a significant increase in their distribution in recent years.

Mr R. Softly showed colour transparencies of some shield bug adults and nymphs.

Mr R. Softly reported that the dark chestnut moth *Conistra ligula* (Esper) had been taken in his light trap at Hampstead in late December and early January. He had also noted a drone fly (*Eristalis* sp.) on a wall during a spell of mild weather.

Mr N.A. Callow had seen a peacock butterfly on 6.1.99.

Mr R.D. Hawkins referred to a radio programme before Christmas that reported that the short-haired bumblebee was extinct in Britain. He wondered which species had been given this unfamiliar common name. The species concerned is *Bombus subterranus* (L.).

Dr S. Judd spoke on the subject of “British Shield Bugs”. This group of bugs comprises the Acanthosomidae, Cydnidae, Scutelleridae and Pentatomidae families. These bugs all have five antennal segments and many of the species are shield-shaped when viewed from above. There are also some shield-shaped bugs in the Coreidae family but these have four antennal segments. The shield bugs are Britain’s largest bugs and many are easily identified in the field, making them an ideal starting point for entomologists wanting to study the Heteroptera. Dr Judd displayed some useful books on the Heteroptera and showed slides of adults and nymphs of British shield bugs. The nymphs are often of different colour to the adult insects and sometimes have bright metallic colours. Most species overwinter as adults, which emerge and lay clusters of eggs in the spring and early summer.

The parent bug, *Elasmucha grisea* (L.), feeds on birch and shows parental care for its eggs and young nymphs, which are covered by the female’s body. Another member of the Acanthosomidae is the juniper bug, *Cyphostethus tristriatus* (Fab.). This used to be a scarce insect feeding on juniper, but has become widespread in gardens since it adapted to feeding on *Chamaecyparis* spp. The Cydnidae have fossorial spines on their tibiae and have a body shape that is more rounded than shield-shaped. Some have a much enlarged scutellum which covers most of the abdomen. Cydnid bugs deposit their eggs in cavities in the soil and use the spines on their legs to burrow into the ground. They feed by sucking sap from plants. The Scutelleridae are mainly associated with grasses and the most frequently encountered are the tortoise bugs, *Eurygaster* spp.

The largest shield bug family in Britain is the Pentatomidae with about 19 species. Some, like *Pieromerus bidens* (L.), are predators of soft-bodied insects such as caterpillars and chrysomelid beetle larvae. The predatory types have thicker rostrums compared with sap-feeding bugs. Exotic species are sometimes imported into Britain with vegetables and other plant material. A regular import is a European green shield bug, *Nezara viridula* (L.).

23 February 1999

The President, Mr B.C. Eversham announced deaths of Major A. Bedford Russell and Mr R.G. Warren.

Mr A.J. Halstead referred to his article on the mealybug ladybird, *Cryptolaemus montrouzieri* Muls., surviving frosts at RHS Garden, Wisley in the winter of 1997–98
He reported that the ladybird had recolonized the same plant of New Zealand flax, *Phormium tenax*, in the following summer and that good numbers of adult and larval *C. montrouzieri* were seen in October 1998. A single live adult was seen on the plant on a sunny day on 6.i.99, confirming that this Australian ladybird is more cold tolerant than is generally thought.

The ordinary meeting was then followed by the Annual General Meeting, Officers’ Reports and the Presidential Address. [See issue 12:2].

**16 March 1999**

Mr R. D. HAWKINS showed four species of hoverfly collected during 1998 at Bagmoor Common, a heathland site in Surrey. These were *Chrysotoxum festivum* (L.), *Xanthogramma pedissequum* (Harris), *Volucella bombylans* (L.) and *Sericornia silentis* (Harris). The freshly killed specimens had been placed in a domestic freezer in a small wooden box and covered only by tissue paper. After three months they were removed, by which time they were quite dry and with the colours well preserved.

The following persons have been approved as members by Council: Dr Peter R. Brough, Mr Peter H. Clarkson, Mr Andrew D. Law, Mr Jonathan W. Spencer, Mr Steven M. Williams, Mr Richard I. Wilson, Mr Robert J. Brooker, Mr Dorje K. Mundle and Mr Andrew Salisbury.

Mr R. SOFTLY reported finding a green shield bug, *Palomena prasina* (L.) on flowers in his home at Hampstead a few days previously. This had the typical green summer coloration rather than the dark form encountered during winter diapause. In *Land and water bugs of the British Isles*, Southwood and Leston give May as the time that overwintered adults emerge. Dr I. McLean had seen a brimstone butterfly in Cambridge on 13.iii.99. Mr S. Miles reported that he and some other members involved in the Society’s investigation into two heathland Biodiversity Action Plan flies had visited Thursley Common, Surrey on 13.iii.99. Several solitary bees, *Andrena* spp. were active, as were brimstone butterfly and the spider wasp *Anoplius viaticus* (L.). Mr R. Uffen said that *Andrena clarkella* (Kirby) was active on sallow catkins in Hertfordshire.

Dr S. BROOKS spoke on “How midges play a key role in our understanding of global climate change”. There have been some dramatic climate changes in the Northern Hemisphere since the last Ice Age and there is currently concern that the climate is becoming warmer, largely as a result of Man’s activities. By recording assemblages of chironomid midge species found at the present time in a range of water types and temperatures, comparisons can be made with the historic record provided by remains of midge larvae found in lake or peat sediments. Similar studies have been done with beetles, ostracods and pollen, although these are not always accurate indicators of the past climate. Plants, in particular, can be slow to colonize new areas in response to climate change and so the pollen record may show a time lag. Chironomid midges are particularly suitable for this type of study because they are well represented in temperate regions. Their larvae develop in water and have hard chitinous head capsules which survive in lake sediments and can be used to identify the species present in past times. The winged adults can fly and quickly colonize new sites when the opportunity arises.

Surveys of lakes and other water bodies have been conducted to record modern species assemblages and relate these to characteristics such as water temperature, type of lake substrate, water depth, pH, salinity and dissolved oxygen levels. The lakes chosen for surveying were those with little human disturbance, and core
samples were taken from the lake bed to compare with the modern fauna. The optimum temperature range for a midge species is taken as being that where the greatest numbers are found today. By comparing modern assemblages with those in lake sediments it is possible to discover the environmental conditions that occurred in the past.

Dr Brooks described several case studies which showed how the chironomid midge fauna had changed in some Scottish and Norwegian lakes in response to changing climate and other environmental factors. At Whitrig Bog in Scotland there was a change to warmer water species when the last Ice Age ended and then a return to colder water species as melting polar ice pushed the Gulf Stream further south. The pollen record for the same site suggested a tundra-type vegetation at the time when warmer water chironomids were present. This suggests that mobile insects, such as these flies, are a more accurate climate indicator when changes occur over a relatively short period of time. Some Norwegian lakes in more recent times have shown an increase in low pH water species as a result of acidification of the water by acid rain and the presence of conifer forests in the water catchment area. A Scottish lake has been limed to restore it to its former pH level. This has resulted in changes in the chironomid fauna in favour of higher pH species but the historic record shows that the species assemblage is not the same as before acidification.

13 April 1999

Mr S. Meredith showed some A4-sized pictures made by a colour printer from transparencies of butterflies, other insects and orchids seen on the recent BENHS expedition to Belize.

Dr J. Muggleton announced that applications for the Society’s Research Fund should be sent to him by 31.ix.99. There is likely to be £2000 for distribution in sums of about £4–500. The Fund, which is also open to non-members of the Society, will support research projects relating to conservation, distribution and taxonomy of insects and/or spiders.

Mr S. Miles reported that he had attended a meeting organized by the RSPB on Rainham Marshes, Essex, to discuss management of the Marshes and raise awareness of their environmental importance. He also drew attention to a publication produced by the Ancient Tree Forum. In their Bulletin No. 4, March 1999, was a request from Dr M. Simmonds of Royal Botanic Gardens, Kew, Surrey for information on death watch beetle, Xestobium rufovillosum (Deggeer) in its natural environment in trees.

Mr S. Meredith reported seeing a brimstone butterfly and three small tortoishells on a hillside in Somerset on 14.iii.99. This is a proposed large blue introduction site. Heavy rabbit grazing was damaging thyme which had been given some protection by covering it with twigs. Mr Meredith noted that blackthorn twigs, bearing eggs of the brown hairstreak, were being used!

Mr R. Uffen reported seeing male Andrena praecox (Scop.) at Frobmores Lakes, St. Albans, Herts. on 2.iv.99. A female was seen on 8.iv.99 at Amwell Quarry. Although this site has plenty of willows, Mr Uffen only counted four male plants. He suspected that the willows had been planted and mostly been propagated from a female clone. Female willows are of limited value to sallow-associated bees as they produce no pollen. Mr Uffen thought an aggregation of approximately 150 holes in the soil between paving stones at Fryent Country Park, Middx. that had been reported by another member, was likely to be a nest site of the solitary bee Lasioglossum malachurus (Kirby).
Dr K. N. A. Alexander spoke on the subject of “Life in old trees”. Britain is relatively rich in ancient trees compared with other parts of Western Europe. Such trees have a large number of insects that are associated with dead wood and wood-rotting fungi. Aging is a natural process and trees such as oak go through recognizable stages as their vigour declines. Branches at the top of the tree die back, leading to a thinning of the crown. Growth lower down is maintained so that ultimately the tree’s crown is lowered. Various fungi attack the heartwood, leading gradually to the development of a hollow trunk. Although trees in this state may look unhealthy, Dr Alexander stressed this was a natural state of affairs and hollow trees continue to make active growth. During the early stages of wood decay more specialist insects are likely to be present, often associated with a particular type of fungal rot. When the decay is advanced the rotten wood is of a more homogeneous nature and supports more general feeders. Dr Alexander made a plea for entomologists to identify the species of fungi on trees as well as the type of tree when recording dead-wood insects. He showed a series of slides of beetles and other insects that are associated with old trees.

Some attempts at providing artificial breeding sites for rot-hole and other dead-wood insects have been successful. The best sites for dead-wood insects have histories that date back to medieval times. River banks and old parkland can be good sites and may be better than ancient woodland. The ideal site has a mixture of old, young and middle-aged trees with nectar plants for the adult insects. New trees must be planted to ensure continuity of trees for the future.

The roots of ancient trees can be damaged by ploughing close to the trunks. Overgrazing can also be detrimental by compacting the soil under the canopy and harming mycorrhizal fungi through dung causing over-enrichment of the soil. Other problems for ancient trees are the removal of lower branches to allow access for farm machinery and the excessive removal of dead wood for aesthetic reasons. Careful tree surgery can be beneficial in regenerating ancient pollarded trees and clearing scrub growth from around veteran trees. Where trees have to be felled for safety reasons it is sometimes possible to leave a safe standing trunk after the branches have been removed. Caring for ancient trees means rediscovering old skills and management techniques need to be appropriate for local environmental conditions. The Ancient Tree Forum has been set up as a means of recording and exchanging information on this subject.

11 May 1999

The following persons have been approved as members by the Council: Mr Ashley P. Leftwich and Mr Martin W. George.

Mr S. Miles displayed a copy of the JNCC Report on the Review into the Operation of Species Protection Legislation in Great Britain. He also made available Minutes of the March 1999 JCCBI meeting and a list of lead partners for Species Action Plans. The letter includes the BENHS as lead partner for three heathland fly species. These papers will be placed in the Society’s library at Dinton Pastures.

Dr J. McLean announced that the JNCC would be reporting to the Department of Environment, Transport and Regions (DETR) on the effectiveness of the Wildlife and Countryside Act Schedules. They would use the above mentioned report and also incorporate the views of other conservation agencies. Consultation on Part II of the Wildlife and Countryside Act, which concerns sites, took place in 1998. Various non-governmental organizations are pressing through Wildlife and Countryside Link for stronger site protection. Dr McLean noted that there was pressure on the
government's legislation programme. It is possible that there might be some new conservation legislation in autumn 1999 as part of the Access to the Countryside proposals but it may be delayed for a year. The new Scottish Assembly has powers to deal with wildlife legislation but is unlikely to do so before autumn 2000.

Dr J. MUGGLETON reported taking in his moth trap at Staines, Middx. on 2.v.99 a lesser yellow underwing, Noctua comes Hüb. and a sycamore moth, Acronicta aecoris (L.). These normally appear about the third week of June. The N. comes was seen on the same egg box as an early grey, Xylocampa areola (Esp.).

Dr N. RAVENScroft spoke on “Micro-habitat overlap in Alpine and Scottish Burnet Moths”. During the 1990s he had studied Zygæna spp. in Western Scotland and in the Alps. Three burnet moths, the transparent burnet (Zygæna purpuralis), the slender Scotch burnet (Z. loti) and the New Forest burnet (Z. viciae) are restricted in Britain to basalt outcrops on the western coast of Scotland. The Scotch burnet (Z. exulans) occurs on mountain tops near Braemar. Of more widespread occurrence in Scotland and elsewhere is the six-spot burnet (Z. filipendulae). The narrow-bordered five-spot burnet (Z. lonicerae) occurs in the Isle of Skye as a separate subspecies. In Scotland Z. viciae has just one site, lonicerae has three (all on Skye) and loti has ten sites (all on Mull); purpuralis has 30 sites and filipendulae occurs on over 100 sites. There is no overlap in sites with the three rarest species.

Dr Ravenscroft studied the vegetation at burnet sites on the undercliffs and on land slips and found the distribution of the moths was related to plant height. Z. loti occurs in less acidic areas with short vegetation; Z. purpuralis is found in more acid areas with bell heather, and Z. filipendulae, lonicerae and viciae occur where there is tall vegetation. In the Alps, Dr Ravenscroft found that the distribution of these species was related to altitude. Up to 800 m, all five species occur together. In terms of abundance at increasing altitude the ranking of the five species is viciae, lonicerae, filipendulae, loti and purpuralis, with viciae being most abundant at lower altitudes and purpuralis going highest up the mountains up to an altitude of about 2400 m.

15 June 1999

Mr S. MILES showed an egg and adults of the hoverfly Chrysotoxum cautum (Harris) and adults of Chrysotoxum octomaculatum Curtis. As part of the BENHS Heathland Flies Biodiversity Project, he had visited a known Surrey locality of C. octomaculatum on 27.v.99. At 9.30 am, with the temperature at about 23°C, a number of this rare and elusive heathland fly were seen visiting the flowers of broom. In a small area of sedges, Carex spp., both hoverflies were seen visiting buttercup flowers and sitting on the foliage of sedges and bramble. At 3.20 pm, a C. cautum was observed depositing eggs on the foliage of Carex acutiformis. The eggs are sausage-shaped, white, 0.75–1 mm long and deposited vertically on to the leaf blade. The sedge was growing in a damp but not wet area with fine silty soil where ants commonly build up soil around the stems of Carex.

Mr R.D. HAWKINS showed specimens of the hoverflies Brachyopa pilosa Collin and Brachypalpus laphriformis (Fall.). These resemble respectively a muscid fly and a mining bee, and because of this may be overlooked. Both were taken at Nower Wood, near Leatherhead, Surrey. The B. pilosa, a male, was taken on beech logs on 3.v.99 and B. laphriformis, a female, on 22.v.99 at the base of an oak tree.

Mr S. MILES stated that English Nature has offered matching funds for the BENHS five-year Heathland Diptera Study.
Mr S. Paston reported finding the yponomeutid moth, *Argyresthia trifasciata* (Staudinger), on 28.v.99 at Norwich, Norfolk. This mines the shoots of juniper and has been known in recent years from the London area, N. Hants and Cheshire.

Mr P. Barnard introduced a programme of talks under the heading “What future for British insect checklists?” by presenting a historical review of British insect checklists. This was followed by Martin Honey with a review of Lepidoptera checklists, and finally, Ian McLean spoke about Diptera checklists and about the use of electronic databases for checklists.

Peter Barnard’s historical review of British insect checklists began with Forster’s catalogue of about 1000 names published in 1770. Subsequent authors added more species, more synonyms, and more additional information. A recurrent theme was of over-ambitious projects never being finished. In more recent times, Kloet and Hincks’ checklist (1945) included about 20000 insects. During the 1970s, a second edition was produced in parts, and with the publication of Peter Chandler’s Diptera checklist (1998), the Royal Entomological Society has started a third series of British insect checklists.

In summing up, Peter Barnard referred to the trade-off between keeping a list up-to-date, and maintaining nomenclatural stability. The Natural History Museum has a co-ordinating role to play in future checklist developments through the National Biodiversity Network (NBN: see http://www.nbn.org.uk/) checklist project.

Martin Honey reviewed the recent history of British Lepidoptera checklists. Lepidopterists have been particularly prolific at producing local lists, and have also been notable for assigning English names and code numbers to many species. The numbering system introduced by the 1979 Recorder’s log book and label list (Bradley and Fletcher) is widely used today. Emmet’s life history chart in MBGBI Vol. 7(2) is a checklist with very detailed ecological information. Recent continental Lepidoptera checklists have opted for full synonymy, and the European checklist is being published on CD-ROM as well as paper format.

Ian McLean described the work leading up to the publication of a British Diptera checklist in 1998. Following on from work done for the Palaearctic Catalogue, three years of intensive work on a British checklist started in 1994. In 1997 alone, the editor, Peter Chandler, visited RES and NHM libraries 30 times, and co-ordinated a major collaborative effort, with 48 specialist contributors and 100 worldwide correspondents. This checklist provides explanatory notes for changes and quotes sources.

Computers have many advantages for those who compile and use checklists, though they may never entirely replace paper lists. JNCC is actively involved in developing computerized checklists with the NBN.

Open discussions were held, with all present contributing their views on a range of issues, including the pro’s and con’s of computers and of English names. Checklists can take a global, continental or national perspective. Though it is laudable to attempt a global checklist, this approach is very complex. National lists have an important part to play but should be integrated with larger projects.
BRITISH ENTOMOLOGICAL AND NATURAL HISTORY SOCIETY
PUBLICATIONS

A field guide to the smaller British Lepidoptera—edited by A. M. Emmet.
Paperback £18.00 (plus £1.60 p.&p.) (members £12.00 + £1.60 p.&p.). Case bound
£22.50 (plus £2.00 p.&p.) (members £15.00 + £2.00 p.&p.).
This book is packed with information about the life histories of almost all the 1500 species of
micro-lepidoptera recorded from the British Isles. An index of foodplants refers the reader to all
spp. known to feed on each particular plant; this makes possible the speedy identification of
larvae found (or at least narrows the field to a small number of spp.).

British hoverflies: an illustrated identification guide—by A. Stubbs, with colour plates
by S. Falk.
2nd edition, 1996, incorporating the first supplement as an appendix, 270 pages of
text plus 12 colour plates. Casebound £26.00 (plus £3.15 p.&p.) (members
£18.00 + £3.15 p.&p.).
This is the most comprehensive book yet published on the British hoverflies. 256 spp. are
described and their identification is made easy by the extensive keys, profusely illustrated with
line figures. The superb plates show 263 specimens, depicting 190 different spp.

British hoverflies: second supplement—by A. Stubbs.
Published 1996, 55 pages.
Paperback £6.00 (plus £0.55 p.&p.) (members £4.00 + £0.55 p.&p.).
Among the features of this supplement:
A review of some advances in the study of the biology of hoverflies
Advances in conservation studies and methods
Guides for identification of the 15 spp. new to the list since 1983. This includes
new, fully revised, illustrated keys to British Sphaerophoria and Platycheirus.
A key to female Neocnemodan (which could not be identified before)
A further bibliography of about 300 references. Over 100 line figures.

New British beetles: species not in Joy’s practical handbook—by P. J. Hodge and
R. A. Jones
Published 1995, 192 pages.
Casebound £24.00 (now out of print). Paperback £18.00 (plus £2.00 p.&p.) (members
£12.00 + £2.00 p.&p.).
There are over 650 British beetles not included in Norman Joy’s Practical handbook of British
beetles. Some of these are new arrivals from the continent or further afield; others have been
confused or overlooked. Many groups have undergone revision and spp. have been ‘split’. Joy
omitted many rare or doubtfully indigenous spp. Several of these have recently increased or
been confirmed as certainly occurring (or having once occurred) in Britain. Many modern keys
have been published since Joy’s book, but these are often scattered through (sometimes obscure)
journals.

New British beetles puts these changes into perspective and offers a new look at the changes
that have taken place in the 63 years since Joy’s publication. The most up-to-date and useful
keywords are listed, together with other helpful and interesting references. or each ‘new’ species,
a short description and comparison with other related spp. is followed by journal and book
references through which identification can be made and confirmed.

All prices are for single copies dispatched to addresses in the UK. Postage will be
higher for multiple copy orders or where delivery is required overseas. Send orders to
Mr G. Boyd, Sales Secretary, 91 Fullingdale Road, Northampton NN3 2PZ. Tel.
01604 410056.
ARTICLES
193 Entomological surveys of vertical river flood defence walls in urban London—brownfield corridors: problems, practicalities and some promising results. R. A. JONES
215 Micropygus vagans Parent (Diptera: Dolichopodidae), a New Zealand fly in the British Isles. P. J. CHANDLER
221 Buchananiella continua (B. White) (Hemiptera: Anthocoridae) established in Britain. P. KIRBY
227 Mordellistena secreta Horak (Coleoptera: Mordellidae), a species new to Britain. B. LEVEY
232 A record of Ectemnius ruficornis (Zett.) (Hymenoptera: Sphecidae) and its anthomyiid cleptoparasite (Diptera) breeding in southern Scotland. K. P. BLAND

SHORT COMMUNICATIONS
213 Scarce wood-decay beetles in a river floodplain farmed landscape in the Upper Thames Valley. K. N. A. ALEXANDER & A. P. FOSTER
220 Procas granulicollis Walton (Col.: Curculionidae) discovered in Surrey. K. N. A. ALEXANDER
224 Humming-bird hawk-moth Macroglossum stellatarum (L.) (Lep.: Sphingidae) probing the ground. L. WINOKUR
225 A new locality for Cosmotettix caudatus (Flor) (Hemiptera: Cicadellidae), with a note on its ecology. P. KIRBY
229 Nysius senecionis (Schilling) (Hemiptera: Lygaeidae) feeding in large numbers on Guernsey fleabane. R. A. JONES
231 Oedalea ringdahli Chvála (Diptera: Hybotidae) in northern England. R. CROSSLEY
234 Ptomaphagus varicornis (Rosenhauer) (Col.: Leiodidae) in North Devon. M. A. SALMON
235 Notes on the habitats of Hebrus ruficeps (Thomson) (Hemiptera: Hebridae). P. KIRBY
237 The specialist Hemiptera associated with mistletoe. J. HOLLIER & J. BRIGGS
239 Notes on the occurrence of the planthoppers Reptalus panzeri (Löw) (Hemiptera: Cixiidae) and Asiraca clavicornis (Fab.) (Hemiptera: Delphacidae). R. A. JONES & P. J. HODGE

PROCEEDINGS AND TRANSACTIONS
241 BENHS Indoor meetings November 1998–June 1999

ibc British Entomological and Natural History Society Publications